Red code legacy renderer (#383)
- Remove some references to gEnv->pRenderer/GetIEditor()->GetRenderer() that is now always null. - Restore the debug console to existence. - Stop building the following in preparation for their removal: Code/CryEngine/Cry3DEngine/* Code/CryEngine/RenderDll/* Code/Tools/CryFXC/* Code/Tools/HLSLCrossCompiler/* Code/Tools/HLSLCrossCompilerMETAL/* Code/Tools/RC/* Code/Tools/ShaderCacheGen/* Tools/CrySCompileServer/*main
parent
aa5ddbf532
commit
1d4c483e73
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,704 @@
|
||||
/*
|
||||
* All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or
|
||||
* its licensors.
|
||||
*
|
||||
* For complete copyright and license terms please see the LICENSE at the root of this
|
||||
* distribution (the "License"). All use of this software is governed by the License,
|
||||
* or, if provided, by the license below or the license accompanying this file. Do not
|
||||
* remove or modify any license notices. This file is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
*
|
||||
*/
|
||||
|
||||
// Copied utils functions from CryPhysics that are used by non-physics systems
|
||||
// This functions will be eventually removed, DO *NOT* use these functions
|
||||
// TO-DO: Re-implement users using new code
|
||||
// LY-109806
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Cry_Math.h"
|
||||
|
||||
namespace LegacyCryPhysicsUtils
|
||||
{
|
||||
namespace polynomial_tpl_IMPL
|
||||
{
|
||||
template<class ftype, int degree>
|
||||
class polynomial_tpl
|
||||
{
|
||||
public:
|
||||
explicit polynomial_tpl() { denom = (ftype)1; };
|
||||
explicit polynomial_tpl(ftype op) { zero(); data[degree] = op; }
|
||||
AZ_FORCE_INLINE polynomial_tpl& zero()
|
||||
{
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
data[i] = 0;
|
||||
}
|
||||
denom = (ftype)1;
|
||||
return *this;
|
||||
}
|
||||
polynomial_tpl(const polynomial_tpl<ftype, degree>& src) { *this = src; }
|
||||
polynomial_tpl& operator=(const polynomial_tpl<ftype, degree>& src)
|
||||
{
|
||||
denom = src.denom;
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
data[i] = src.data[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
template<int degree1>
|
||||
AZ_FORCE_INLINE polynomial_tpl& operator=(const polynomial_tpl<ftype, degree1>& src)
|
||||
{
|
||||
int i;
|
||||
denom = src.denom;
|
||||
for (i = 0; i <= min(degree, degree1); i++)
|
||||
{
|
||||
data[i] = src.data[i];
|
||||
}
|
||||
for (; i < degree; i++)
|
||||
{
|
||||
data[i] = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
AZ_FORCE_INLINE polynomial_tpl& set(ftype* pdata)
|
||||
{
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
data[degree - i] = pdata[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
AZ_FORCE_INLINE ftype& operator[](int idx) { return data[idx]; }
|
||||
|
||||
void calc_deriviative(polynomial_tpl<ftype, degree>& deriv, int curdegree = degree) const;
|
||||
|
||||
AZ_FORCE_INLINE polynomial_tpl& fixsign()
|
||||
{
|
||||
ftype sg = sgnnz(denom);
|
||||
denom *= sg;
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
data[i] *= sg;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
int findroots(ftype start, ftype end, ftype* proots, int nIters = 20, int curdegree = degree, bool noDegreeCheck = false) const;
|
||||
int nroots(ftype start, ftype end) const;
|
||||
|
||||
AZ_FORCE_INLINE ftype eval(ftype x) const
|
||||
{
|
||||
ftype res = 0;
|
||||
for (int i = degree; i >= 0; i--)
|
||||
{
|
||||
res = res * x + data[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
AZ_FORCE_INLINE ftype eval(ftype x, int subdegree) const
|
||||
{
|
||||
ftype res = data[subdegree];
|
||||
for (int i = subdegree - 1; i >= 0; i--)
|
||||
{
|
||||
res = res * x + data[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
AZ_FORCE_INLINE polynomial_tpl& operator+=(ftype op) { data[0] += op * denom; return *this; }
|
||||
AZ_FORCE_INLINE polynomial_tpl& operator-=(ftype op) { data[0] -= op * denom; return *this; }
|
||||
AZ_FORCE_INLINE polynomial_tpl operator*(ftype op) const
|
||||
{
|
||||
polynomial_tpl<ftype, degree> res;
|
||||
res.denom = denom;
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
res.data[i] = data[i] * op;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
AZ_FORCE_INLINE polynomial_tpl& operator*=(ftype op)
|
||||
{
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
data[i] *= op;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
AZ_FORCE_INLINE polynomial_tpl operator/(ftype op) const
|
||||
{
|
||||
polynomial_tpl<ftype, degree> res = *this;
|
||||
res.denom = denom * op;
|
||||
return res;
|
||||
}
|
||||
AZ_FORCE_INLINE polynomial_tpl& operator/=(ftype op) { denom *= op; return *this; }
|
||||
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree * 2> sqr() const { return *this * *this; }
|
||||
|
||||
ftype denom;
|
||||
ftype data[degree + 1];
|
||||
};
|
||||
|
||||
template <class ftype>
|
||||
struct tagPolyE
|
||||
{
|
||||
inline static ftype polye() { return (ftype)1E-10; }
|
||||
};
|
||||
|
||||
template<>
|
||||
inline float tagPolyE<float>::polye() { return 1e-6f; }
|
||||
|
||||
template <class ftype>
|
||||
inline ftype polye() { return tagPolyE<ftype>::polye(); }
|
||||
|
||||
// Don't use this macro; use AZStd::max instead. This is only here to make the template const arguments below readable
|
||||
// and because Visual Studio 2013 doesn't have a const_expr version of std::max
|
||||
#define deprecated_degmax(degree1, degree2) (((degree1) > (degree2)) ? (degree1) : (degree2))
|
||||
|
||||
template<class ftype, int degree>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree> operator+(const polynomial_tpl<ftype, degree>& pn, ftype op)
|
||||
{
|
||||
polynomial_tpl<ftype, degree> res = pn;
|
||||
res.data[0] += op * res.denom;
|
||||
return res;
|
||||
}
|
||||
template<class ftype, int degree>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree> operator-(const polynomial_tpl<ftype, degree>& pn, ftype op)
|
||||
{
|
||||
polynomial_tpl<ftype, degree> res = pn;
|
||||
res.data[0] -= op * res.denom;
|
||||
return res;
|
||||
}
|
||||
|
||||
template<class ftype, int degree>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree> operator+(ftype op, const polynomial_tpl<ftype, degree>& pn)
|
||||
{
|
||||
polynomial_tpl<ftype, degree> res = pn;
|
||||
res.data[0] += op * res.denom;
|
||||
return res;
|
||||
}
|
||||
template<class ftype, int degree>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree> operator-(ftype op, const polynomial_tpl<ftype, degree>& pn)
|
||||
{
|
||||
polynomial_tpl<ftype, degree> res = pn;
|
||||
res.data[0] -= op * res.denom;
|
||||
for (int i = 0; i <= degree; i++)
|
||||
{
|
||||
res.data[i] = -res.data[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
template<class ftype, int degree>
|
||||
polynomial_tpl<ftype, degree * 2> AZ_FORCE_INLINE psqr(const polynomial_tpl<ftype, degree>& op) { return op * op; }
|
||||
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, deprecated_degmax(degree1, degree2)> operator+(const polynomial_tpl<ftype, degree1>& op1, const polynomial_tpl<ftype, degree2>& op2)
|
||||
{
|
||||
polynomial_tpl<ftype, deprecated_degmax(degree1, degree2)> res;
|
||||
int i;
|
||||
for (i = 0; i <= min(degree1, degree2); i++)
|
||||
{
|
||||
res.data[i] = op1.data[i] * op2.denom + op2.data[i] * op1.denom;
|
||||
}
|
||||
for (; i <= degree1; i++)
|
||||
{
|
||||
res.data[i] = op1.data[i] * op2.denom;
|
||||
}
|
||||
for (; i <= degree2; i++)
|
||||
{
|
||||
res.data[i] = op2.data[i] * op1.denom;
|
||||
}
|
||||
res.denom = op1.denom * op2.denom;
|
||||
return res;
|
||||
}
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, deprecated_degmax(degree1, degree2)> operator-(const polynomial_tpl<ftype, degree1>& op1, const polynomial_tpl<ftype, degree2>& op2)
|
||||
{
|
||||
polynomial_tpl<ftype, deprecated_degmax(degree1, degree2)> res;
|
||||
int i;
|
||||
for (i = 0; i <= min(degree1, degree2); i++)
|
||||
{
|
||||
res.data[i] = op1.data[i] * op2.denom - op2.data[i] * op1.denom;
|
||||
}
|
||||
for (; i <= degree1; i++)
|
||||
{
|
||||
res.data[i] = op1.data[i] * op2.denom;
|
||||
}
|
||||
for (; i <= degree2; i++)
|
||||
{
|
||||
res.data[i] = op2.data[i] * op1.denom;
|
||||
}
|
||||
res.denom = op1.denom * op2.denom;
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree1>& operator+=(polynomial_tpl<ftype, degree1>& op1, const polynomial_tpl<ftype, degree2>& op2)
|
||||
{
|
||||
for (int i = 0; i < min(degree1, degree2); i++)
|
||||
{
|
||||
op1.data[i] = op1.data[i] * op2.denom + op2.data[i] * op1.denom;
|
||||
}
|
||||
op1.denom *= op2.denom;
|
||||
return op1;
|
||||
}
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree1>& operator-=(polynomial_tpl<ftype, degree1>& op1, const polynomial_tpl<ftype, degree2>& op2)
|
||||
{
|
||||
for (int i = 0; i < min(degree1, degree2); i++)
|
||||
{
|
||||
op1.data[i] = op1.data[i] * op2.denom - op2.data[i] * op1.denom;
|
||||
}
|
||||
op1.denom *= op2.denom;
|
||||
return op1;
|
||||
}
|
||||
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree1 + degree2> operator*(const polynomial_tpl<ftype, degree1>& op1, const polynomial_tpl<ftype, degree2>& op2)
|
||||
{
|
||||
polynomial_tpl<ftype, degree1 + degree2> res;
|
||||
res.zero();
|
||||
int j;
|
||||
switch (degree1)
|
||||
{
|
||||
case 8:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[8 + j] += op1.data[8] * op2.data[j];
|
||||
}
|
||||
case 7:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[7 + j] += op1.data[7] * op2.data[j];
|
||||
}
|
||||
case 6:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[6 + j] += op1.data[6] * op2.data[j];
|
||||
}
|
||||
case 5:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[5 + j] += op1.data[5] * op2.data[j];
|
||||
}
|
||||
case 4:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[4 + j] += op1.data[4] * op2.data[j];
|
||||
}
|
||||
case 3:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[3 + j] += op1.data[3] * op2.data[j];
|
||||
}
|
||||
case 2:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[2 + j] += op1.data[2] * op2.data[j];
|
||||
}
|
||||
case 1:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[1 + j] += op1.data[1] * op2.data[j];
|
||||
}
|
||||
case 0:
|
||||
for (j = 0; j <= degree2; j++)
|
||||
{
|
||||
res.data[0 + j] += op1.data[0] * op2.data[j];
|
||||
}
|
||||
}
|
||||
res.denom = op1.denom * op2.denom;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
template <class ftype>
|
||||
AZ_FORCE_INLINE void polynomial_divide(const polynomial_tpl<ftype, 8>& num, const polynomial_tpl<ftype, 8>& den, polynomial_tpl<ftype, 8>& quot,
|
||||
polynomial_tpl<ftype, 8>& rem, int degree1, int degree2)
|
||||
{
|
||||
int i, j, k, l;
|
||||
ftype maxel;
|
||||
for (i = 0; i <= degree1; i++)
|
||||
{
|
||||
rem.data[i] = num.data[i];
|
||||
}
|
||||
for (i = 0; i <= degree1 - degree2; i++)
|
||||
{
|
||||
quot.data[i] = 0;
|
||||
}
|
||||
for (i = 1, maxel = fabs_tpl(num.data[0]); i <= degree1; i++)
|
||||
{
|
||||
maxel = max(maxel, num.data[i]);
|
||||
}
|
||||
for (maxel *= polye<ftype>(); degree1 >= 0 && fabs_tpl(num.data[degree1]) < maxel; degree1--)
|
||||
{
|
||||
;
|
||||
}
|
||||
for (i = 1, maxel = fabs_tpl(den.data[0]); i <= degree2; i++)
|
||||
{
|
||||
maxel = max(maxel, den.data[i]);
|
||||
}
|
||||
for (maxel *= polye<ftype>(); degree2 >= 0 && fabs_tpl(den.data[degree2]) < maxel; degree2--)
|
||||
{
|
||||
;
|
||||
}
|
||||
rem.denom = num.denom;
|
||||
quot.denom = (ftype)1;
|
||||
if (degree1 < 0 || degree2 < 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for (k = degree1 - degree2, l = degree1; l >= degree2; l--, k--)
|
||||
{
|
||||
quot.data[k] = rem.data[l] * den.denom;
|
||||
quot.denom *= den.data[degree2];
|
||||
for (i = degree1 - degree2; i > k; i--)
|
||||
{
|
||||
quot.data[i] *= den.data[degree2];
|
||||
}
|
||||
for (i = degree2 - 1, j = l - 1; i >= 0; i--, j--)
|
||||
{
|
||||
rem.data[j] = rem.data[j] * den.data[degree2] - den.data[i] * rem.data[l];
|
||||
}
|
||||
for (; j >= 0; j--)
|
||||
{
|
||||
rem.data[j] *= den.data[degree2];
|
||||
}
|
||||
rem.denom *= den.data[degree2];
|
||||
}
|
||||
}
|
||||
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree1 - degree2> operator/(const polynomial_tpl<ftype, degree1>& num, const polynomial_tpl<ftype, degree2>& den)
|
||||
{
|
||||
polynomial_tpl<ftype, degree1 - degree2> quot;
|
||||
polynomial_tpl<ftype, degree1> rem;
|
||||
polynomial_divide((polynomial_tpl<ftype, 8>&)num, (polynomial_tpl<ftype, 8>&)den, (polynomial_tpl<ftype, 8>&)quot,
|
||||
(polynomial_tpl<ftype, 8>&)rem, degree1, degree2);
|
||||
return quot;
|
||||
}
|
||||
template <class ftype, int degree1, int degree2>
|
||||
AZ_FORCE_INLINE polynomial_tpl<ftype, degree2 - 1> operator%(const polynomial_tpl<ftype, degree1>& num, const polynomial_tpl<ftype, degree2>& den)
|
||||
{
|
||||
polynomial_tpl<ftype, degree1 - degree2> quot;
|
||||
polynomial_tpl<ftype, degree1> rem;
|
||||
polynomial_divide((polynomial_tpl<ftype, 8>&)num, (polynomial_tpl<ftype, 8>&)den, (polynomial_tpl<ftype, 8>&)quot,
|
||||
(polynomial_tpl<ftype, 8>&)rem, degree1, degree2);
|
||||
return (polynomial_tpl<ftype, degree2 - 1>&)rem;
|
||||
}
|
||||
|
||||
template <class ftype, int degree>
|
||||
AZ_FORCE_INLINE void polynomial_tpl<ftype, degree>::calc_deriviative(polynomial_tpl<ftype, degree>& deriv, int curdegree) const
|
||||
{
|
||||
for (int i = 0; i < curdegree; i++)
|
||||
{
|
||||
deriv.data[i] = data[i + 1] * (i + 1);
|
||||
}
|
||||
deriv.denom = denom;
|
||||
}
|
||||
|
||||
template<typename to_t, typename from_t>
|
||||
to_t* convert_type(from_t* input)
|
||||
{
|
||||
typedef union
|
||||
{
|
||||
to_t* to;
|
||||
from_t* from;
|
||||
} convert_union;
|
||||
convert_union u;
|
||||
u.from = input;
|
||||
return u.to;
|
||||
}
|
||||
|
||||
template <class ftype, int degree>
|
||||
AZ_FORCE_INLINE int polynomial_tpl<ftype, degree>::nroots(ftype start, ftype end) const
|
||||
{
|
||||
polynomial_tpl<ftype, degree> f[degree + 1];
|
||||
int i, j, sg_a, sg_b;
|
||||
ftype val, prevval;
|
||||
|
||||
calc_deriviative(f[0]);
|
||||
polynomial_divide(*convert_type<polynomial_tpl<ftype, 8> >(this), *convert_type< polynomial_tpl<ftype, 8> >(&f[0]), *convert_type<polynomial_tpl<ftype, 8> >(&f[degree]),
|
||||
*convert_type<polynomial_tpl<ftype, 8> >(&f[1]), degree, degree - 1);
|
||||
f[1].denom = -f[1].denom;
|
||||
for (i = 2; i < degree; i++)
|
||||
{
|
||||
polynomial_divide(*convert_type<polynomial_tpl<ftype, 8> >(&f[i - 2]), *convert_type<polynomial_tpl<ftype, 8> >(&f[i - 1]), *convert_type<polynomial_tpl<ftype, 8> >(&f[degree]),
|
||||
*convert_type<polynomial_tpl<ftype, 8> >(&f[i]), degree + 1 - i, degree - i);
|
||||
f[i].denom = -f[i].denom;
|
||||
if (fabs_tpl(f[i].denom) > (ftype)1E10)
|
||||
{
|
||||
for (j = 0; j <= degree - 1 - i; j++)
|
||||
{
|
||||
f[i].data[j] *= (ftype)1E-10;
|
||||
}
|
||||
f[i].denom *= (ftype)1E-10;
|
||||
}
|
||||
}
|
||||
|
||||
prevval = eval(start) * denom;
|
||||
for (i = sg_a = 0; i < degree; i++, prevval = val)
|
||||
{
|
||||
val = f[i].eval(start, degree - 1 - i) * f[i].denom;
|
||||
sg_a += isneg(val * prevval);
|
||||
}
|
||||
|
||||
prevval = eval(end) * denom;
|
||||
for (i = sg_b = 0; i < degree; i++, prevval = val)
|
||||
{
|
||||
val = f[i].eval(end, degree - 1 - i) * f[i].denom;
|
||||
sg_b += isneg(val * prevval);
|
||||
}
|
||||
|
||||
return fabs_tpl(sg_a - sg_b);
|
||||
}
|
||||
|
||||
template<class ftype>
|
||||
AZ_FORCE_INLINE ftype cubert_tpl(ftype x) { return fabs_tpl(x) > (ftype)1E-20 ? exp_tpl(log_tpl(fabs_tpl(x)) * (ftype)(1.0 / 3)) * sgnnz(x) : x; }
|
||||
template<class ftype>
|
||||
AZ_FORCE_INLINE ftype pow_tpl(ftype x, ftype pow) { return fabs_tpl(x) > (ftype)1E-20 ? exp_tpl(log_tpl(fabs_tpl(x)) * pow) * sgnnz(x) : x; }
|
||||
template<class ftype>
|
||||
AZ_FORCE_INLINE void swap(ftype* ptr, int i, int j) { ftype t = ptr[i]; ptr[i] = ptr[j]; ptr[j] = t; }
|
||||
|
||||
template <class ftype, int maxdegree>
|
||||
int polynomial_tpl<ftype, maxdegree>::findroots(ftype start, ftype end, ftype* proots, [[maybe_unused]] int nIters, int degree, bool noDegreeCheck) const
|
||||
{
|
||||
AZ_UNUSED(nIters);
|
||||
int i, j, nRoots = 0;
|
||||
ftype maxel;
|
||||
if (!noDegreeCheck)
|
||||
{
|
||||
for (i = 1, maxel = fabs_tpl(data[0]); i <= degree; i++)
|
||||
{
|
||||
maxel = max(maxel, data[i]);
|
||||
}
|
||||
for (maxel *= polye<ftype>(); degree > 0 && fabs_tpl(data[degree]) <= maxel; degree--)
|
||||
{
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (maxdegree >= 1)
|
||||
{
|
||||
if (degree == 1)
|
||||
{
|
||||
proots[0] = data[0] / data[1];
|
||||
nRoots = 1;
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (maxdegree >= 2)
|
||||
{
|
||||
if (degree == 2)
|
||||
{
|
||||
ftype a, b, c, d, bound[2], sg;
|
||||
|
||||
a = data[2];
|
||||
b = data[1];
|
||||
c = data[0];
|
||||
d = aznumeric_cast<ftype>(sgnnz(a));
|
||||
a *= d;
|
||||
b *= d;
|
||||
c *= d;
|
||||
d = b * b - a * c * 4;
|
||||
bound[0] = start * a * 2 + b;
|
||||
bound[1] = end * a * 2 + b;
|
||||
sg = aznumeric_cast<ftype>((sgnnz(bound[0] * bound[1]) + 1) >> 1);
|
||||
bound[0] *= bound[0];
|
||||
bound[1] *= bound[1];
|
||||
bound[isneg(fabs_tpl(bound[1]) - fabs_tpl(bound[0]))] *= sg;
|
||||
|
||||
if (isnonneg(d) & inrange(d, bound[0], bound[1]))
|
||||
{
|
||||
d = sqrt_tpl(d);
|
||||
a = (ftype)0.5 / a;
|
||||
proots[nRoots] = (-b - d) * a;
|
||||
nRoots += inrange(proots[nRoots], start, end);
|
||||
proots[nRoots] = (-b + d) * a;
|
||||
nRoots += inrange(proots[nRoots], start, end);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (maxdegree >= 3)
|
||||
{
|
||||
if (degree == 3)
|
||||
{
|
||||
ftype t, a, b, c, a3, p, q, Q, Qr, Ar, Ai, phi;
|
||||
|
||||
t = (ftype)1.0 / data[3];
|
||||
a = data[2] * t;
|
||||
b = data[1] * t;
|
||||
c = data[0] * t;
|
||||
a3 = a * (ftype)(1.0 / 3);
|
||||
p = b - a * a3;
|
||||
q = (a3 * b - c) * (ftype)0.5 - cube(a3);
|
||||
Q = cube(p * (ftype)(1.0 / 3)) + q * q;
|
||||
Qr = sqrt_tpl(fabs_tpl(Q));
|
||||
|
||||
if (Q > 0)
|
||||
{
|
||||
proots[0] = cubert_tpl(q + Qr) + cubert_tpl(q - Qr) - a3;
|
||||
nRoots = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
phi = atan2_tpl(Qr, q) * (ftype)(1.0 / 3);
|
||||
t = pow_tpl(Qr * Qr + q * q, (ftype)(1.0 / 6));
|
||||
Ar = t * cos_tpl(phi);
|
||||
Ai = t * sin_tpl(phi);
|
||||
proots[0] = 2 * Ar - a3;
|
||||
proots[1] = aznumeric_cast<ftype>(-Ar + Ai * sqrt3 - a3);
|
||||
proots[2] = aznumeric_cast<ftype>(-Ar - Ai * sqrt3 - a3);
|
||||
i = idxmax3(proots);
|
||||
swap(proots, i, 2);
|
||||
i = isneg(proots[0] - proots[1]);
|
||||
swap(proots, i, 1);
|
||||
nRoots = 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (maxdegree >= 4)
|
||||
{
|
||||
if (degree == 4)
|
||||
{
|
||||
ftype t, a3, a2, a1, a0, y, R, D, E, subroots[3];
|
||||
const ftype e = (ftype)1E-9;
|
||||
|
||||
t = (ftype)1.0 / data[4];
|
||||
a3 = data[3] * t;
|
||||
a2 = data[2] * t;
|
||||
a1 = data[1] * t;
|
||||
a0 = data[0] * t;
|
||||
polynomial_tpl<ftype, 3> p3aux;
|
||||
ftype kp3aux[] = { 1, -a2, a1 * a3 - 4 * a0, 4 * a2 * a0 - a1 * a1 - a3 * a3 * a0 };
|
||||
p3aux.set(kp3aux);
|
||||
if (!p3aux.findroots((ftype)-1E20, (ftype)1E20, subroots))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
R = a3 * a3 * (ftype)0.25 - a2 + (y = subroots[0]);
|
||||
|
||||
if (R > -e)
|
||||
{
|
||||
if (R < e)
|
||||
{
|
||||
D = E = a3 * a3 * (ftype)(3.0 / 4) - 2 * a2;
|
||||
t = y * y - 4 * a0;
|
||||
if (t < -e)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
t = 2 * sqrt_tpl(max((ftype)0, t));
|
||||
}
|
||||
else
|
||||
{
|
||||
R = sqrt_tpl(max((ftype)0, R));
|
||||
D = E = a3 * a3 * (ftype)(3.0 / 4) - R * R - 2 * a2;
|
||||
t = (4 * a3 * a2 - 8 * a1 - a3 * a3 * a3) / R * (ftype)0.25;
|
||||
}
|
||||
if (D + t > -e)
|
||||
{
|
||||
D = sqrt_tpl(max((ftype)0, D + t));
|
||||
proots[nRoots++] = a3 * (ftype)-0.25 + (R - D) * (ftype)0.5;
|
||||
proots[nRoots++] = a3 * (ftype)-0.25 + (R + D) * (ftype)0.5;
|
||||
}
|
||||
if (E - t > -e)
|
||||
{
|
||||
E = sqrt_tpl(max((ftype)0, E - t));
|
||||
proots[nRoots++] = a3 * (ftype)-0.25 - (R + E) * (ftype)0.5;
|
||||
proots[nRoots++] = a3 * (ftype)-0.25 - (R - E) * (ftype)0.5;
|
||||
}
|
||||
if (nRoots == 4)
|
||||
{
|
||||
i = idxmax3(proots);
|
||||
if (proots[3] < proots[i])
|
||||
{
|
||||
swap(proots, i, 3);
|
||||
}
|
||||
i = idxmax3(proots);
|
||||
swap(proots, i, 2);
|
||||
i = isneg(proots[0] - proots[1]);
|
||||
swap(proots, i, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (maxdegree > 4)
|
||||
{
|
||||
if (degree > 4)
|
||||
{
|
||||
ftype roots[maxdegree + 1], prevroot, val, prevval[2], curval, bound[2], middle;
|
||||
polynomial_tpl<ftype, maxdegree> deriv;
|
||||
int nExtremes, iter, iBound;
|
||||
calc_deriviative(deriv);
|
||||
|
||||
// find a subset of deriviative extremes between start and end
|
||||
for (nExtremes = deriv.findroots(start, end, roots + 1, nIters, degree - 1) + 1; nExtremes > 1 && roots[nExtremes - 1] > end; nExtremes--)
|
||||
{
|
||||
;
|
||||
}
|
||||
for (i = 1; i < nExtremes && roots[i] < start; i++)
|
||||
{
|
||||
;
|
||||
}
|
||||
roots[i - 1] = start;
|
||||
PREFAST_ASSUME(nExtremes < maxdegree + 1);
|
||||
roots[nExtremes++] = end;
|
||||
|
||||
for (prevroot = start, prevval[0] = eval(start, degree), nRoots = 0; i < nExtremes; prevval[0] = val, prevroot = roots[i++])
|
||||
{
|
||||
val = eval(roots[i], degree);
|
||||
if (val * prevval[0] < 0)
|
||||
{
|
||||
// we have exactly one root between prevroot and roots[i]
|
||||
bound[0] = prevroot;
|
||||
bound[1] = roots[i];
|
||||
iter = 0;
|
||||
do
|
||||
{
|
||||
middle = (bound[0] + bound[1]) * (ftype)0.5;
|
||||
curval = eval(middle, degree);
|
||||
iBound = isneg(prevval[0] * curval);
|
||||
bound[iBound] = middle;
|
||||
prevval[iBound] = curval;
|
||||
} while (++iter < nIters);
|
||||
proots[nRoots++] = middle;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < nRoots && proots[i] < start; i++)
|
||||
{
|
||||
;
|
||||
}
|
||||
for (; nRoots > i&& proots[nRoots - 1] > end; nRoots--)
|
||||
{
|
||||
;
|
||||
}
|
||||
for (j = i; j < nRoots; j++)
|
||||
{
|
||||
proots[j - i] = proots[j];
|
||||
}
|
||||
|
||||
return nRoots - i;
|
||||
}
|
||||
} // namespace polynomial_tpl_IMPL
|
||||
template<class ftype, int degree>
|
||||
using polynomial_tpl = polynomial_tpl_IMPL::polynomial_tpl<ftype, degree>;
|
||||
|
||||
typedef polynomial_tpl<real, 3> P3;
|
||||
typedef polynomial_tpl<real, 2> P2;
|
||||
typedef polynomial_tpl<real, 1> P1;
|
||||
typedef polynomial_tpl<float, 3> P3f;
|
||||
typedef polynomial_tpl<float, 2> P2f;
|
||||
typedef polynomial_tpl<float, 1> P1f;
|
||||
} // namespace LegacyCryPhysicsUtils
|
||||
Loading…
Reference in New Issue