You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Code/Sandbox/Plugins/EditorCommon/CurveEditor.cpp

2460 lines
80 KiB
C++

/*
* All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or
* its licensors.
*
* For complete copyright and license terms please see the LICENSE at the root of this
* distribution (the "License"). All use of this software is governed by the License,
* or, if provided, by the license below or the license accompanying this file. Do not
* remove or modify any license notices. This file is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
*/
// Original file Copyright Crytek GMBH or its affiliates, used under license.
#include "EditorCommon_precompiled.h"
#include "CurveEditor.h"
#include "CurveEditorControl.h"
#include "DrawingPrimitives/TimeSlider.h"
#include "DrawingPrimitives/Ruler.h"
AZ_PUSH_DISABLE_WARNING(4251, "-Wunknown-warning-option") // class '...' needs to have dll-interface to be used by clients of class '...'
#include <QBitmap>
#include <QColor>
#include <QIcon>
#include <QMenu>
#include <QMouseEvent>
#include <QPainter>
#include <QPainterPath>
#include <QPixmap>
#include <QToolTip>
AZ_POP_DISABLE_WARNING
// C6201: buffer overrun for <variable>, which is possibly stack allocated: index <name> is out of valid index range <min> to <max>
#if defined(__clang__)
#define INDEX_NOT_OUT_OF_RANGE _Pragma("clang diagnostic ignored \"-Warray-bounds\"")
#else
#define INDEX_NOT_OUT_OF_RANGE PREFAST_SUPPRESS_WARNING(6201)
#endif
#define NO_BUFFER_OVERRUN PREFAST_SUPPRESS_WARNING(6385 6386)
#include <ISplines.h>
#include "Cry_LegacyPhysUtils.h"
namespace CurveEditorHelpers
{
const uint numColors = 4;
ColorB colors[numColors] =
{
ColorB(243, 126, 121),
ColorB(121, 152, 243),
ColorB(187, 243, 121),
ColorB(243, 121, 223),
};
ColorB GetCurveColor(const uint n)
{
return colors[n % numColors];
}
QColor LerpColor(const QColor& a, const QColor& b, float k)
{
float mk = 1.0f - k;
return QColor(aznumeric_cast<int>(a.red() * mk + b.red() * k),
aznumeric_cast<int>(a.green() * mk + b.green() * k),
aznumeric_cast<int>(a.blue() * mk + b.blue() * k),
aznumeric_cast<int>(a.alpha() * mk + b.alpha() * k));
}
}
namespace
{
const int kRulerHeight = 16;
const int kRulerShadowHeight = 6;
const int kRulerMarkHeight = 8;
const int kTextXOffset = -1;
const int kTextYOffset = 16;
const int kTangentLength = 24;
const float kHitDistance = 15.0f;
const float kMinZoom = 0.001f;
const float kMaxZoom = 1000.0f;
const float kFitMargin = 16.0f;
const QPointF kPointRectExtent = QPointF(2.5f, 2.5f);
Vec2 TransformPointToScreen(const Vec2 zoom, const Vec2 translation, QRect curveArea, Vec2 point)
{
Vec2 transformedPoint = Vec2(point.x * zoom.x, point.y * -zoom.y) + translation;
transformedPoint.x *= curveArea.width();
transformedPoint.y *= curveArea.height();
return Vec2(transformedPoint.x + curveArea.left(), transformedPoint.y + curveArea.top());
}
Vec2 TransformPointFromScreen(const Vec2 zoom, const Vec2 translation, QRect curveArea, Vec2 point)
{
Vec2 transformedPoint = Vec2((point.x - curveArea.left()) / curveArea.width(), (point.y - curveArea.top()) / curveArea.height()) - translation;
transformedPoint.x /= zoom.x;
transformedPoint.y /= -zoom.y;
return Vec2(transformedPoint.x, transformedPoint.y);
}
float EvaluateBezier(float t, float p0, float p1, float p2, float p3)
{
const float a = 1 - t;
const float aSq = a * a;
const float tSq = t * t;
return (aSq * a * p0) + (3.0f * aSq * t * p1) + (3.0f * a * tSq * p2) + (tSq * t * p3);
}
void SplitBezier(SCurveEditorKey& newKey, SCurveEditorKey& leftKey, SCurveEditorKey& rightKey)
{
// use De Casteljau's algorithm to find the
float normalizedTime = (newKey.m_time - leftKey.m_time) / (rightKey.m_time - leftKey.m_time);
Vec2 p0 = Vec2(leftKey.m_time, leftKey.m_value);
Vec2 p3 = Vec2(rightKey.m_time, rightKey.m_value);
Vec2 p1 = p0 + leftKey.m_outTangent;
Vec2 p2 = p3 + rightKey.m_inTangent;
Vec2 q0 = p0 + (p1 - p0) * normalizedTime;
Vec2 q1 = p1 + (p2 - p1) * normalizedTime;
Vec2 q2 = p2 + (p3 - p2) * normalizedTime;
Vec2 r0 = q0 + (q1 - q0) * normalizedTime;
Vec2 r1 = q1 + (q2 - q1) * normalizedTime;
Vec2 s0 = r0 + (r1 - r0) * normalizedTime;
newKey.m_inTangent = r0 - s0;
newKey.m_outTangent = r1 - s0;
leftKey.m_outTangent = q0 - p0;
rightKey.m_inTangent = q2 - p3;
}
QPointF Vec2ToPoint(Vec2 point)
{
return QPointF(point.x, point.y);
}
Vec2 PointToVec2(QPointF point)
{
return Vec2(aznumeric_cast<float>(point.x()), aznumeric_cast<float>(point.y()));
}
// This function returns a new key with position and weights affected by eTangentType_Smooth, eTangentType_Linear and eTangentType_Step for the outgoing tangent
SCurveEditorKey ApplyOutTangentFlags(const SCurveEditorKey& key, [[maybe_unused]] const SCurveEditorKey* pLeftKey, const SCurveEditorKey& rightKey)
{
SCurveEditorKey newKey = key;
if (rightKey.m_inTangentType == SCurveEditorKey::eTangentType_Step
&& key.m_outTangentType != SCurveEditorKey::eTangentType_Step)
{
newKey.m_outTangent.y = 0.0f;
return newKey;
}
switch (key.m_outTangentType)
{
case SCurveEditorKey::eTangentType_Linear:
newKey.m_outTangent.y = (rightKey.m_value - key.m_value) / 3.0f;
break;
case SCurveEditorKey::eTangentType_Step:
newKey.m_outTangent.x = 0.0f;
newKey.m_outTangent.y = 0.0f;
newKey.m_value = rightKey.m_value;
break;
default:
const float oneThirdDeltaTime = (rightKey.m_time - newKey.m_time) / 3.0f;
float ratio = oneThirdDeltaTime / newKey.m_outTangent.x;
newKey.m_outTangent *= ratio;
break;
}
return newKey;
}
// This function returns a new key with position and weights affected by eTangentType_Smooth, eTangentType_Linear and eTangentType_Step for the incoming tangent
SCurveEditorKey ApplyInTangentFlags(const SCurveEditorKey& key, const SCurveEditorKey& leftKey, [[maybe_unused]] const SCurveEditorKey* pRightKey)
{
SCurveEditorKey newKey = key;
if (leftKey.m_outTangentType == SCurveEditorKey::eTangentType_Step)
{
newKey.m_inTangent.y = 0.0f;
return newKey;
}
switch (key.m_inTangentType)
{
case SCurveEditorKey::eTangentType_Linear:
newKey.m_inTangent.y = (leftKey.m_value - key.m_value) / 3.0f;
break;
case SCurveEditorKey::eTangentType_Step:
newKey.m_inTangent.x = 0.0f;
newKey.m_inTangent.y = 0.0f;
newKey.m_value = leftKey.m_value;
break;
default:
const float oneThirdDeltaTime = (newKey.m_time - leftKey.m_time) / 3.0f;
float ratio = oneThirdDeltaTime / -newKey.m_inTangent.x;
newKey.m_inTangent *= ratio;
break;
}
return newKey;
}
QPainterPath CreatePathFromCurve(const SCurveEditorCurve& curve,
ECurveEditorCurveType curveType, AZStd::function<Vec2(Vec2)> transformFunc)
{
QPainterPath path;
const Vec2 startPoint(curve.m_keys[0].m_time, curve.m_keys[0].m_value);
const Vec2 startTransformed = transformFunc(startPoint);
path.moveTo(startTransformed.x, startTransformed.y);
const auto endIter = curve.m_keys.end() - 1;
if (curve.m_customInterpolator && curve.m_keys.size() > 1)
{
const float range_start = curve.m_customInterpolator->GetKeyTime(0);
const float range_end = curve.m_customInterpolator->GetKeyTime(curve.m_customInterpolator->GetKeyCount() - 1);
const float range_delta = range_end - range_start;
if (range_delta > 0)
{
const int drawResolution = (int)ceil_tpl(transformFunc(Vec2(range_end, 0.0f)).x -
transformFunc(Vec2(range_start, 0.0f)).x);
const float increment = range_delta / drawResolution;
std::vector<Vec2> drawList;
drawList.reserve(512);
float value;
for (float time = range_start; time < range_end; time += increment)
{
curve.m_customInterpolator->InterpolateFloat(time, value);
drawList.push_back(Vec2(time, value));
}
path.moveTo(Vec2ToPoint(transformFunc(drawList.front())));
for (int i = 1; i < drawList.size(); i++)
{
path.lineTo(Vec2ToPoint(transformFunc(drawList[i])));
}
}
}
else if (curveType == eCECT_Bezier)
{
for (auto iter = curve.m_keys.begin(); iter != endIter; ++iter)
{
const SCurveEditorKey* pKeyLeftOfSegment = (iter != curve.m_keys.begin()) ? &*(iter - 1) : nullptr;
const SCurveEditorKey* pKeyRightOfSegment = (iter != (curve.m_keys.end() - 2)) ? &*(iter + 2) : nullptr;
const SCurveEditorKey segmentStartKey = ApplyOutTangentFlags(*iter, pKeyLeftOfSegment, *(iter + 1));
const SCurveEditorKey segmentEndKey = ApplyInTangentFlags(*(iter + 1), *iter, pKeyRightOfSegment);
const Vec2 p0 = Vec2(segmentStartKey.m_time, segmentStartKey.m_value);
const Vec2 p3 = Vec2(segmentEndKey.m_time, segmentEndKey.m_value);
// Need to compute tangents for x so that the cubic 2D Bezier does a linear interpolation in
// that dimension, because we actually want to draw a cubic 1D Bezier curve
//const float outTangentX = (2.0f * p0.x + p3.x) / 3.0f; // p1 = (2 * p0 + p3) / 3
//const float inTangentX = (p0.x + 2.0f * p3.x) / 3.0f; // p2 = (p0 + 2 * p3) / 3
const Vec2 p1 = p0 + segmentStartKey.m_outTangent; // Vec2(inTangentX, p0.y + segmentStartKey.m_outTangent.y);
const Vec2 p2 = p3 + segmentEndKey.m_inTangent; // Vec2(inTangentX, p3.y + segmentEndKey.m_inTangent.y);
const QPointF p0Transformed = Vec2ToPoint(transformFunc(p0));
const QPointF p1Transformed = Vec2ToPoint(transformFunc(p1));
const QPointF p2Transformed = Vec2ToPoint(transformFunc(p2));
const QPointF p3Transformed = Vec2ToPoint(transformFunc(p3));
path.moveTo(p0Transformed);
path.cubicTo(p1Transformed, p2Transformed, p3Transformed);
}
}
else if (curveType == eCECT_2DBezier)
{
for (auto iter = curve.m_keys.begin(); iter != endIter; ++iter)
{
const SCurveEditorKey& segmentStartKey = *iter;
const SCurveEditorKey& segmentEndKey = *(iter + 1);
const Vec2 p0 = Vec2(segmentStartKey.m_time, segmentStartKey.m_value);
const Vec2 p3 = Vec2(segmentEndKey.m_time, segmentEndKey.m_value);
const Vec2 p1 = p0 + segmentStartKey.m_outTangent;
const Vec2 p2 = p3 + segmentEndKey.m_inTangent;
const QPointF p1Transformed = Vec2ToPoint(transformFunc(p1));
const QPointF p2Transformed = Vec2ToPoint(transformFunc(p2));
const QPointF p3Transformed = Vec2ToPoint(transformFunc(p3));
path.cubicTo(p1Transformed, p2Transformed, p3Transformed);
}
}
return path;
}
// Renders path outside of the current range of the curve
QPainterPath CreateExtrapolatedPathFromCurve(const SCurveEditorCurve& curve, AZStd::function<Vec2(Vec2)> transformFunc, float windowWidth)
{
QPainterPath path;
if (curve.m_keys.size() > 0)
{
const Vec2 startPoint = Vec2(curve.m_keys[0].m_time, curve.m_keys[0].m_value);
const Vec2 startTransformed = transformFunc(startPoint);
if (startTransformed.x > 0.0f)
{
path.moveTo(std::min(startTransformed.x, windowWidth), startTransformed.y);
path.lineTo(0.0f, startTransformed.y);
}
const Vec2 endPoint(curve.m_keys.back().m_time, curve.m_keys.back().m_value);
const Vec2 endTransformed = transformFunc(endPoint);
if (endTransformed.x < windowWidth)
{
path.moveTo(std::max(endTransformed.x, 0.0f), endTransformed.y);
path.lineTo(windowWidth, endTransformed.y);
}
}
else
{
const Vec2 pointOnCurve = Vec2(0.0f, curve.m_defaultValue);
const Vec2 pointOnTransformed = transformFunc(pointOnCurve);
path.moveTo(0.0, pointOnTransformed.y);
path.lineTo(windowWidth, pointOnTransformed.y);
}
QVector<qreal> dashPattern;
dashPattern << 16 << 8;
QPainterPathStroker stroker;
stroker.setCapStyle(Qt::RoundCap);
stroker.setDashPattern(dashPattern);
stroker.setWidth(0.5);
return stroker.createStroke(path);
}
// Renders line between discontinuous path when step mode is used for a control point
QPainterPath CreateDiscontinuinityPathFromCurve(const SCurveEditorCurve& curve, ECurveEditorCurveType curveType, AZStd::function<Vec2(Vec2)> transformFunc)
{
QPainterPath path;
if (curve.m_keys.size() > 0)
{
const auto endIter = curve.m_keys.end() - 1;
if (curveType == eCECT_Bezier && !curve.m_customInterpolator)
{
for (auto iter = curve.m_keys.begin(); iter != endIter; ++iter)
{
const SCurveEditorKey* pKeyLeftOfSegment = (iter != curve.m_keys.begin()) ? &*(iter - 1) : nullptr;
const SCurveEditorKey* pKeyRightOfSegment = (iter != (curve.m_keys.end() - 2)) ? &*(iter + 2) : nullptr;
const SCurveEditorKey segmentStartKey = ApplyOutTangentFlags(*iter, pKeyLeftOfSegment, *(iter + 1));
const SCurveEditorKey segmentEndKey = ApplyInTangentFlags(*(iter + 1), *iter, pKeyRightOfSegment);
if (segmentStartKey.m_value != iter->m_value)
{
const Vec2 start = Vec2(segmentStartKey.m_time, segmentStartKey.m_value);
const Vec2 end = Vec2(iter->m_time, iter->m_value);
const QPointF startTransformed = Vec2ToPoint(transformFunc(start));
const QPointF endTransformed = Vec2ToPoint(transformFunc(end));
path.moveTo(startTransformed);
path.lineTo(endTransformed);
}
if (segmentEndKey.m_value != (iter + 1)->m_value)
{
const Vec2 start = Vec2(segmentEndKey.m_time, segmentEndKey.m_value);
const Vec2 end = Vec2((iter + 1)->m_time, (iter + 1)->m_value);
const QPointF startTransformed = Vec2ToPoint(transformFunc(start));
const QPointF endTransformed = Vec2ToPoint(transformFunc(end));
path.moveTo(startTransformed);
path.lineTo(endTransformed);
}
}
}
}
QVector<qreal> dashPattern;
dashPattern << 2 << 10;
QPainterPathStroker stroker;
stroker.setCapStyle(Qt::RoundCap);
stroker.setDashPattern(dashPattern);
stroker.setWidth(0.5);
return stroker.createStroke(path);
}
void DrawPointRect(QPainter& painter, QPointF point, const QColor& color)
{
painter.setBrush(QBrush(color));
painter.setPen(QColor(0, 0, 0));
painter.drawRect(QRectF(point - kPointRectExtent, point + kPointRectExtent));
}
void ForEachKey(SCurveEditorContent& content, AZStd::function<void (SCurveEditorCurve& curve, SCurveEditorKey& key)> fun)
{
for (auto iter = content.m_curves.begin(); iter != content.m_curves.end(); ++iter)
{
SCurveEditorCurve& curve = *iter;
for (size_t i = 0; i < curve.m_keys.size(); ++i)
{
fun(curve, curve.m_keys[i]);
}
}
}
Vec2 ClosestPointOnBezierSegment(const Vec2 point, const float t0, const float t1, const float p0, const float p1, const float p2, const float p3)
{
using namespace LegacyCryPhysicsUtils;
// If values are too close the distance function is too flat to be useful. We just assume the curve is flat then
if ((p0 * p0 + p1 * p1 + p2 * p2 + p3 * p3) < 1e-10f)
{
return Vec2(point.x, p0);
}
const float deltaTime = (t1 - t0);
const float deltaTimeSq = deltaTime * deltaTime;
// Those are just the normal cubic Bezier formulas B(t) and B'(t) in collected polynomial form
const P3f cubicBezierPoly = P3f(-p0 + 3.0f * p1 - 3.0f * p2 + p3) + P2f(3.0f * p0 - 6.0f * p1 + 3.0f * p2) + P1f(3.0f * p1 - 3.0f * p0) + p0;
const P2f cubicBezierDerivativePoly = P2f(-3.0f * p0 + 9.0f * p1 - 6.0f * p2 + 3.0f * (p3 - p2)) + P1f(6.0f * p0 - 12.0f * p1 + 6.0f * p2) - 3.0f * p0 + 3.0f * p1;
// lerp(t, t0, t1) in polynomial form
const P1f timePoly = P1f(deltaTime) + t0;
// Derivative of the distance function (cubicBezierPoly - point.y) ^ 2 + (timePoly - point.x) ^ 2
const auto distanceDerivativePoly = (cubicBezierDerivativePoly * (cubicBezierPoly - point.y) + (timePoly - point.x) * deltaTime) * 2.0f;
// The point of minimum distance must be at one of the roots of the distance derivative or at the start/end of the segment
float checkPoints[7];
const uint numRoots = distanceDerivativePoly.findroots(0.0f, 1.0f, checkPoints + 2);
// Start and end of segment
checkPoints[0] = 0.0f;
checkPoints[1] = 1.0f;
// Find the closest point under all the candidates
Vec2 closestPoint;
float minDistanceSq = std::numeric_limits<float>::max();
for (uint i = 0; i < numRoots + 2; ++i)
{
const Vec2 rootPoint(Lerp(t0, t1, checkPoints[i]), EvaluateBezier(checkPoints[i], p0, p1, p2, p3));
const float deltaX = rootPoint.x - point.x;
const float deltaY = rootPoint.y - point.y;
const float distSq = deltaX * deltaX + deltaY * deltaY;
if (distSq < minDistanceSq)
{
closestPoint = rootPoint;
minDistanceSq = distSq;
}
}
return closestPoint;
}
Range GetBezierSegmentValueRange(const SCurveEditorKey& startKey, const SCurveEditorKey& endKey)
{
using namespace LegacyCryPhysicsUtils;
const float p0 = startKey.m_value;
const float p1 = p0 + startKey.m_outTangent.y;
const float p3 = endKey.m_value;
const float p2 = p3 + endKey.m_inTangent.y;
Range valueRange(std::min(p0, p3), std::max(p0, p3));
const P2f cubicBezierDerivativePoly = P2f(-3.0f * p0 + 9.0f * p1 - 6.0f * p2 + 3.0f * (p3 - p2)) + P1f(6.0f * p0 - 12.0f * p1 + 6.0f * p2) - 3.0f * p0 + 3.0f * p1;
float roots[2];
const uint numRoots = cubicBezierDerivativePoly.findroots(0.0f, 1.0f, roots);
for (uint i = 0; i < numRoots; ++i)
{
const float rootValue = EvaluateBezier(roots[i], p0, p1, p2, p3);
valueRange.start = std::min(valueRange.start, rootValue);
valueRange.end = std::max(valueRange.end, rootValue);
}
return valueRange;
}
float DistanceTo2DBezierSegment([[maybe_unused]] const Vec2 point, [[maybe_unused]] const SCurveEditorKey& startKey, [[maybe_unused]] const SCurveEditorKey& endKey)
{
return std::numeric_limits<float>::max();
}
void SmoothTangents(const SCurveEditorKey& key, Vec2& inTangent, Vec2& outTangent, SCurveEditorKey* pLeftKey, SCurveEditorKey* pRightKey, bool applyInverseSegmentLengthFactor)
{
inTangent.Normalize();
outTangent.Normalize();
if (!pLeftKey && !pRightKey)
{
return;
}
else if (!pLeftKey)
{
inTangent = -outTangent;
}
else if (!pRightKey)
{
outTangent = -inTangent;
}
else
{
const float deltaTime = pRightKey->m_time - pLeftKey->m_time;
const float ratio = (key.m_time - pLeftKey->m_time) / deltaTime;
Vec2 smoothedTangent = Vec2::CreateLerp(-inTangent, outTangent, applyInverseSegmentLengthFactor ? ratio : 0.5f);
inTangent = -smoothedTangent;
outTangent = smoothedTangent;
}
if (pLeftKey)
{
float leftSegmentTime = key.m_time - pLeftKey->m_time;
float inFactor = (leftSegmentTime / -inTangent.x) / 3.0f;
inTangent *= inFactor;
}
if (pRightKey)
{
float rightSegmentTime = pRightKey->m_time - key.m_time;
float outFactor = (rightSegmentTime / outTangent.x) / 3.0f;
outTangent *= outFactor;
}
}
Vec2 GetSmoothInTangent(SCurveEditorKey& key, Vec2 inTangent, Vec2 outTangent, SCurveEditorKey* pLeftKey, SCurveEditorKey* pRightKey, bool applyInverseSegmentLengthFactor)
{
SmoothTangents(key, inTangent, outTangent, pLeftKey, pRightKey, applyInverseSegmentLengthFactor);
return inTangent;
}
Vec2 GetSmoothOutTangent(SCurveEditorKey& key, Vec2 inTangent, Vec2 outTangent, SCurveEditorKey* pLeftKey, SCurveEditorKey* pRightKey, bool applyInverseSegmentLengthFactor)
{
SmoothTangents(key, inTangent, outTangent, pLeftKey, pRightKey, applyInverseSegmentLengthFactor);
return outTangent;
}
}
void showTooltip(const SCurveEditorKey& key, const QPoint& pos, QWidget* parent, QString tipOverride = QString())
{
if (!tipOverride.isEmpty())
{
return QToolTip::showText(pos, tipOverride, parent);
}
QString tip = QString().asprintf("%s <- [%5.2f, %5.2f] -> %s",
CCurveEditor::TangentTypeToString(key.m_inTangentType).toUtf8().data(),
key.m_time, key.m_time,
CCurveEditor::TangentTypeToString(key.m_outTangentType).toUtf8().data());
QToolTip::showText(pos, tip, parent);
}
struct CCurveEditor::SSelectionHandler
: public CCurveEditor::SMouseHandler
{
CCurveEditor* m_pCurveEditor;
QPoint m_startPoint;
QRect m_rect;
bool m_bAdd;
SSelectionHandler(CCurveEditor* pCurveEditor, bool bAdd)
: m_pCurveEditor(pCurveEditor)
, m_bAdd(bAdd) {}
void mousePressEvent(QMouseEvent* pEvent) override
{
m_startPoint = pEvent->pos();
m_rect = QRect(m_startPoint, m_startPoint + QPoint(1, 1));
}
void mouseMoveEvent(QMouseEvent* pEvent) override
{
m_rect = QRect(m_startPoint, pEvent->pos() + QPoint(1, 1));
}
void mouseReleaseEvent([[maybe_unused]] QMouseEvent* pEvent) override
{
m_pCurveEditor->SelectInRect(m_rect);
}
void paintOver(QPainter& painter) override
{
painter.save();
QColor highlightColor = m_pCurveEditor->palette().color(QPalette::Highlight);
QColor highlightColorA = QColor(highlightColor.red(), highlightColor.green(), highlightColor.blue(), 128);
painter.setPen(QPen(highlightColor));
painter.setBrush(QBrush(highlightColorA));
painter.drawRect(QRectF(m_rect));
painter.restore();
}
};
struct CCurveEditor::SPanHandler
: public CCurveEditor::SMouseHandler
{
CCurveEditor* m_pCurveEditor;
QPoint m_startPoint;
Vec2 m_startTranslation;
SPanHandler(CCurveEditor* pCurveEditor)
: m_pCurveEditor(pCurveEditor)
{
}
void mousePressEvent(QMouseEvent* pEvent) override
{
if (m_pCurveEditor->m_optOutFlags & EOptOutZoomingAndPanning)
{
return;
}
m_startPoint = QPoint(int(pEvent->x()), int(pEvent->y()));
m_startTranslation = m_pCurveEditor->m_translation;
}
void mouseMoveEvent(QMouseEvent* pEvent) override
{
if (m_pCurveEditor->m_optOutFlags & EOptOutZoomingAndPanning)
{
return;
}
const Vec2 windowSize((float)m_pCurveEditor->size().width(), (float)m_pCurveEditor->size().height());
const int pixelDeltaX = pEvent->x() - m_startPoint.x();
const int pixelDeltaY = pEvent->y() - m_startPoint.y();
float deltaX = float(pixelDeltaX) / (windowSize.x);
float deltaY = float(pixelDeltaY) / (windowSize.y);
if (m_pCurveEditor->IsTimeRangeEnforced())
{
deltaX = 0;
}
const Vec2 delta(deltaX, deltaY);
m_pCurveEditor->m_translation = m_startTranslation + delta;
m_pCurveEditor->update();
}
};
struct CCurveEditor::SZoomHandler
: public CCurveEditor::SMouseHandler
{
CCurveEditor* m_pCurveEditor;
QPoint m_lastPoint;
SZoomHandler(CCurveEditor* pCurveEditor)
: m_pCurveEditor(pCurveEditor)
{
}
void mousePressEvent(QMouseEvent* pEvent) override
{
if (m_pCurveEditor->m_optOutFlags & EOptOutZoomingAndPanning)
{
return;
}
m_lastPoint = QPoint(int(pEvent->x()), int(pEvent->y()));
}
void mouseMoveEvent(QMouseEvent* pEvent) override
{
if (m_pCurveEditor->m_optOutFlags & EOptOutZoomingAndPanning)
{
return;
}
const Vec2 windowSize((float)m_pCurveEditor->size().width(), (float)m_pCurveEditor->size().height());
const int pixelDeltaX = pEvent->x() - m_lastPoint.x();
const int pixelDeltaY = pEvent->y() - m_lastPoint.y();
m_lastPoint = QPoint(int(pEvent->x()), int(pEvent->y()));
m_pCurveEditor->m_zoom.x *= pow(1.2f, (float)pixelDeltaX * 0.03f);
m_pCurveEditor->m_zoom.y *= pow(1.2f, (float)pixelDeltaY * 0.03f);
m_pCurveEditor->m_zoom.x = clamp_tpl(m_pCurveEditor->m_zoom.x, kMinZoom, kMaxZoom);
m_pCurveEditor->m_zoom.y = clamp_tpl(m_pCurveEditor->m_zoom.y, kMinZoom, kMaxZoom);
m_pCurveEditor->update();
}
};
struct CCurveEditor::SScrubHandler
: SMouseHandler
{
CCurveEditor* m_pCurveEditor;
float m_startThumbPosition;
QPoint m_startPoint;
SScrubHandler(CCurveEditor* pCurveEditor)
: m_pCurveEditor(pCurveEditor)
{
}
void mousePressEvent(QMouseEvent* ev) override
{
QPoint point = QPoint(ev->pos().x(), ev->pos().y());
const Vec2 pointInCurveSpace = TransformPointFromScreen(m_pCurveEditor->m_zoom, m_pCurveEditor->m_translation, m_pCurveEditor->GetCurveArea(), PointToVec2(point));
m_pCurveEditor->m_time = pointInCurveSpace.x;
m_startThumbPosition = m_pCurveEditor->m_time;
m_startPoint = point;
m_pCurveEditor->SignalScrub();
}
void Apply(QMouseEvent* ev, [[maybe_unused]] bool continuous)
{
QPoint point = QPoint(ev->pos().x(), ev->pos().y());
bool shift = ev->modifiers().testFlag(Qt::ShiftModifier);
bool control = ev->modifiers().testFlag(Qt::ControlModifier);
const float deltaX = (float)(point.x() - m_startPoint.x());
const float width = (float)m_pCurveEditor->size().width();
float delta = float(deltaX) / (width * m_pCurveEditor->m_zoom.x);
if (shift)
{
delta *= 0.01f;
}
if (control)
{
delta *= 0.1f;
}
m_pCurveEditor->m_time = m_startThumbPosition + delta;
m_pCurveEditor->SignalScrub();
}
void mouseMoveEvent(QMouseEvent* ev) override
{
Apply(ev, true);
}
void mouseReleaseEvent(QMouseEvent* ev) override
{
Apply(ev, false);
}
};
struct CCurveEditor::SMoveKeyHandler
: public CCurveEditor::SMouseHandler
{
CCurveEditor* m_pCurveEditor;
bool m_bCycleSelection;
Vec2 m_startPoint;
std::vector<Vec2> m_keyPositions;
bool m_clamp;
QRectF m_range;
SMoveKeyHandler(CCurveEditor* pCurveEditor, bool bCycleSelection, QRectF* clampRange = nullptr)
: m_pCurveEditor(pCurveEditor)
, m_bCycleSelection(bCycleSelection)
, m_startPoint(0.0f, 0.0f)
, m_clamp(clampRange ? true : false)
, m_range(clampRange ? *clampRange : QRectF())
{}
void mousePressEvent(QMouseEvent* pEvent) override
{
const QPoint currentPos = pEvent->pos();
m_startPoint = TransformPointFromScreen(m_pCurveEditor->m_zoom,
m_pCurveEditor->m_translation, m_pCurveEditor->GetCurveArea(), PointToVec2(currentPos));
StoreKeyPositions();
m_pCurveEditor->SignalKeyMoveStarted();
}
void mouseMoveEvent(QMouseEvent* pEvent) override
{
RestoreKeyPositions();
const QPoint currentPos = pEvent->pos();
Vec2 transformedPos = TransformPointFromScreen(m_pCurveEditor->m_zoom,
m_pCurveEditor->m_translation, m_pCurveEditor->GetCurveArea(), PointToVec2(currentPos));
const Vec2 offset = transformedPos - m_startPoint;
SCurveEditorContent* pContent = m_pCurveEditor->m_pContent;
for (auto curveIter = pContent->m_curves.begin(); curveIter != pContent->m_curves.end(); ++curveIter)
{
SCurveEditorCurve& curve = *curveIter;
for (auto iter = curve.m_keys.begin(); iter != curve.m_keys.end(); ++iter)
{
if (iter->m_bSelected)
{
iter->m_time += offset.x;
iter->m_value += offset.y;
if (m_clamp)
{
iter->m_time = clamp_tpl(iter->m_time, (float)m_range.left(), (float)m_range.right());
iter->m_value = clamp_tpl(iter->m_value, (float)m_range.bottom(), (float)m_range.top());
}
iter->m_bModified = true;
}
}
m_pCurveEditor->SortKeys(curve);
}
m_pCurveEditor->SignalKeyMoved();
}
void focusOutEvent([[maybe_unused]] QFocusEvent* pEvent) override
{
RestoreKeyPositions();
}
void mouseReleaseEvent([[maybe_unused]] QMouseEvent* pEvent) override
{
m_pCurveEditor->ContentChanged();
}
void StoreKeyPositions()
{
SCurveEditorContent* pContent = m_pCurveEditor->m_pContent;
for (auto curveIter = pContent->m_curves.begin(); curveIter != pContent->m_curves.end(); ++curveIter)
{
SCurveEditorCurve& curve = *curveIter;
for (auto iter = curve.m_keys.begin(); iter != curve.m_keys.end(); ++iter)
{
if (iter->m_bSelected)
{
m_keyPositions.push_back(Vec2(iter->m_time, iter->m_value));
}
}
}
}
void RestoreKeyPositions()
{
SCurveEditorContent* pContent = m_pCurveEditor->m_pContent;
auto posIter = m_keyPositions.begin();
for (auto curveIter = pContent->m_curves.begin(); curveIter != pContent->m_curves.end(); ++curveIter)
{
SCurveEditorCurve& curve = *curveIter;
for (auto iter = curve.m_keys.begin(); iter != curve.m_keys.end(); ++iter)
{
if (iter->m_bSelected)
{
iter->m_time = posIter->x;
iter->m_value = (posIter++)->y;
}
}
}
}
};
struct CCurveEditor::SRotateTangentHandler
: public CCurveEditor::SMouseHandler
{
CCurveEditor* m_pCurveEditor;
CCurveEditorTangentControl* m_pSelectedTangent;
Vec2 m_StartPoint;
Vec2 m_InitialInTangent;
SCurveEditorKey::ETangentType m_InitialInTangentType;
Vec2 m_InitialOutTangent;
SCurveEditorKey::ETangentType m_InitialOutTangentType;
SRotateTangentHandler(CCurveEditor* pCurveEditor, CCurveEditorTangentControl* pTangentControl)
: m_pCurveEditor(pCurveEditor)
, m_pSelectedTangent(pTangentControl)
, m_StartPoint(0.0f, 0.0f)
{}
void mousePressEvent(QMouseEvent* pEvent) override
{
const QPoint currentPos = pEvent->pos();
m_StartPoint = m_pCurveEditor->TransformFromScreenCoordinates(PointToVec2(currentPos));
StoreTangents();
}
void mouseMoveEvent(QMouseEvent* pEvent) override
{
const QPoint currentPos = pEvent->pos();
const Vec2 transformedPos = m_pCurveEditor->TransformFromScreenCoordinates(PointToVec2(currentPos));
const Vec2 offset = transformedPos - m_StartPoint;
SCurveEditorKey& key = m_pSelectedTangent->GetControl().GetKey();
Vec2 keyPos(key.m_time, key.m_value);
bool isInTangent = m_pSelectedTangent->GetTangentDirection() == ETangent_In;
bool shouldTangentsBePaired = key.m_inTangentType == key.m_outTangentType
&& (key.m_inTangentType == SCurveEditorKey::eTangentType_Standard
|| key.m_inTangentType == SCurveEditorKey::eTangentType_Smooth
|| key.m_inTangentType == SCurveEditorKey::eTangentType_Flat);
float tangentEpsilon = 1e-6f;
// strictly left or right of key - have a fairly large epsilon to avoid weird floating point innaccuracies in editor
bool leftOfKey = (transformedPos.x - keyPos.x) < -tangentEpsilon;
bool rightOfKey = (transformedPos.x - keyPos.x) > tangentEpsilon;
bool tangentVertical = !(leftOfKey || rightOfKey);
if ((isInTangent && leftOfKey) || (shouldTangentsBePaired && !tangentVertical))
{
Vec2 newInTangent = transformedPos - keyPos;
if (rightOfKey)
{
// mirror tangent
newInTangent *= -1;
}
float scale = key.m_inTangent.x / newInTangent.x;
newInTangent *= scale;
key.m_inTangent = newInTangent;
key.m_inTangentType = shouldTangentsBePaired ? SCurveEditorKey::eTangentType_Standard : key.m_inTangentType;
}
if ((!isInTangent && rightOfKey) || (shouldTangentsBePaired && !tangentVertical))
{
Vec2 newOutTangent = transformedPos - keyPos;
if (leftOfKey)
{
// mirror tangent
newOutTangent *= -1;
}
float scale = key.m_outTangent.x / newOutTangent.x;
newOutTangent *= scale;
key.m_outTangent = newOutTangent;
key.m_outTangentType = shouldTangentsBePaired ? SCurveEditorKey::eTangentType_Standard : key.m_outTangentType;
}
}
void focusOutEvent([[maybe_unused]] QFocusEvent* pEvent) override
{
RestoreTangents();
}
void mouseReleaseEvent([[maybe_unused]] QMouseEvent* pEvent) override
{
m_pCurveEditor->ContentChanged();
}
void StoreTangents()
{
SCurveEditorKey& key = m_pSelectedTangent->GetControl().GetKey();
m_InitialInTangent = key.m_inTangent;
m_InitialInTangentType = key.m_inTangentType;
m_InitialOutTangent = key.m_outTangent;
m_InitialOutTangentType = key.m_outTangentType;
}
void RestoreTangents()
{
SCurveEditorKey& key = m_pSelectedTangent->GetControl().GetKey();
key.m_inTangent = m_InitialInTangent;
key.m_inTangentType = m_InitialInTangentType;
key.m_outTangent = m_InitialOutTangent;
key.m_outTangentType = m_InitialOutTangentType;
}
};
CCurveEditor::CCurveEditor(QWidget* parent)
: QWidget(parent)
, m_pContent(nullptr)
, m_pMouseHandler(nullptr)
, m_curveType(eCECT_Bezier)
, m_bWeighted(false)
, m_bHandlesVisible(true)
, m_bRulerVisible(true)
, m_bTimeSliderVisible(true)
, m_time(0.0f)
, m_zoom(0.5f, 0.5f)
, m_translation(0.5f, 0.5f)
, m_timeRange(0, 1)
, m_timeRangeEnforced(false)
, m_valueRange(0, 1)
, m_optOutFlags(0)
{
setMouseTracking(true);
//EnforceTimeRange(0.0f, 1.0f);
SetTimeRange(0, 1);
SetValueRange(0, 1);
ZoomToTimeRange(-0.1f, 1.1f);
ZoomToValueRange(-0.1f, 1.1f);
SetRulerVisible(true);
QSizePolicy sizePolicy(QSizePolicy::Expanding, QSizePolicy::Fixed);
setSizePolicy(sizePolicy);
}
CCurveEditor::~CCurveEditor()
{
}
void CCurveEditor::SetContent(SCurveEditorContent* pContent)
{
m_pContent = pContent;
ContentChanged();
update();
}
void CCurveEditor::SetTime(const float time)
{
m_time = time;
update();
}
void CCurveEditor::SetTimeRange(const float start, const float end)
{
SetTimeRange(start, end, false);
}
void CCurveEditor::EnforceTimeRange(const float start, const float end)
{
SetTimeRange(start, end, true);
ZoomToTimeRange(start, end);
}
bool CCurveEditor::IsTimeRangeEnforced() const
{
return m_timeRangeEnforced;
}
void CCurveEditor::SetTimeRange(const float start, const float end, bool enforce)
{
if (start <= end)
{
m_timeRangeEnforced = enforce;
m_timeRange = Range(start, end);
update();
}
}
void CCurveEditor::SetValueRange(const float min, const float max)
{
if (min <= max)
{
m_valueRange = Range(min, max);
update();
}
}
void CCurveEditor::ZoomToTimeRange(const float start, const float end)
{
if (start < end)
{
m_zoom.x = 1.0f / (end - start);
m_translation.x = start / (start - end);
}
}
void CCurveEditor::ZoomToValueRange(const float min, const float max)
{
if (min < max)
{
m_zoom.y = 1.0f / (max - min);
m_translation.y = max / (max - min);
}
}
void CCurveEditor::paintEvent([[maybe_unused]] QPaintEvent* pEvent)
{
QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing);
painter.translate(0.5f, 0.5f);
const QPalette& palette = this->palette();
auto transformFunc = [&](Vec2 point)
{
return TransformPointToScreen(m_zoom, m_translation, GetCurveArea(), point);
};
auto invTransformFunc = [&](Vec2 screenPoint)
{
return TransformPointFromScreen(m_zoom, m_translation, GetCurveArea(), screenPoint);
};
const QColor rangeHighlightColor = CurveEditorHelpers::LerpColor(palette.color(QPalette::WindowText), palette.color(QPalette::Window), 0.95f);
const QRectF rangesRect(Vec2ToPoint(transformFunc(Vec2(m_timeRange.start, m_valueRange.start))), Vec2ToPoint(transformFunc(Vec2(m_timeRange.end, m_valueRange.end))));
painter.setPen(QPen(Qt::NoPen));
if ((m_optOutFlags & EOptOutBackground))
{
painter.setBrush(Qt::transparent);
}
else
{
painter.setBrush(rangeHighlightColor);
}
if ((m_optOutFlags & EOptOutRuler))
{
painter.drawRect(rangesRect);
}
else
{
painter.drawRect(rect());
}
if (m_pContent)
{
const QPen extrapolatedCurvePen = QPen(palette.color(QPalette::Highlight));
TCurveEditorCurves& curves = m_pContent->m_curves;
for (auto curveIter = curves.begin(); curveIter != curves.end(); ++curveIter)
{
SCurveEditorCurve& curve = *curveIter;
QColor penColor = QColor(curve.m_color.r, curve.m_color.g, curve.m_color.b, curve.m_color.a);
if (!(m_optOutFlags & EOptOutCustomPenColor) && m_penColor.isValid())
{
penColor = m_penColor;
}
painter.setBrush(QBrush(Qt::NoBrush));
const QPen curvePen = QPen(penColor, 2);
const QPen narrowCurvePen = QPen(penColor);
if (!(m_optOutFlags & eOptOutDashedPath))
{
const QPainterPath extrapolatedPath = CreateExtrapolatedPathFromCurve(curve, transformFunc, aznumeric_cast<float>(width()));
painter.setPen(narrowCurvePen);
painter.drawPath(extrapolatedPath);
}
const QPainterPath discontinuinityPath = CreateDiscontinuinityPathFromCurve(curve, m_curveType, transformFunc);
painter.setPen(narrowCurvePen);
painter.drawPath(discontinuinityPath);
if (curve.m_keys.size() > 0)
{
UpdateTangents();
const QPainterPath path = CreatePathFromCurve(curve, m_curveType, transformFunc);
painter.setPen(curvePen);
painter.drawPath(path);
}
}
}
if (!(m_optOutFlags & EOptOutSelectionKey))
{
if ((m_optOutFlags & EOptOutKeyIcon))
{
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
pControlKey->Paint(painter, palette, !(m_optOutFlags & EOptOutSelectionInOutTangent));
}
}
else
{
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
pControlKey->PaintIcon(painter, palette, !(m_optOutFlags & EOptOutSelectionInOutTangent));
}
}
}
if (m_pMouseHandler)
{
m_pMouseHandler->paintOver(painter);
}
if (!(m_optOutFlags & EOptOutRuler))
{
DrawingPrimitives::SRulerOptions rulerOptions;
rulerOptions.m_rect = QRect(0, -1, size().width(), kRulerHeight + 2);
rulerOptions.m_visibleRange = Range(-m_translation.x / m_zoom.x, (1.0f - m_translation.x) / m_zoom.x);
rulerOptions.m_rulerRange = rulerOptions.m_visibleRange;
rulerOptions.m_markHeight = kRulerMarkHeight;
rulerOptions.m_shadowSize = kRulerShadowHeight;
rulerOptions.m_textXOffset = kTextXOffset;
rulerOptions.m_textYOffset = kTextYOffset;
int rulerPrecision;
DrawingPrimitives::DrawRuler(painter, palette, rulerOptions, &rulerPrecision);
if (m_pContent && isEnabled() && !(m_optOutFlags & EOptOutTimeSlider))
{
DrawingPrimitives::STimeSliderOptions timeSliderOptions;
timeSliderOptions.m_rect = rect();
timeSliderOptions.m_precision = rulerPrecision;
timeSliderOptions.m_position = aznumeric_cast<int>(transformFunc(Vec2(m_time, 0.0f)).x);
timeSliderOptions.m_time = m_time;
timeSliderOptions.m_bHasFocus = hasFocus();
DrawingPrimitives::DrawTimeSlider(painter, palette, timeSliderOptions);
}
}
}
void CCurveEditor::mousePressEvent(QMouseEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls)
{
return QWidget::mousePressEvent(pEvent);
}
setFocus();
if (pEvent->button() == Qt::LeftButton)
{
LeftButtonMousePressEvent(pEvent);
}
else if (pEvent->button() == Qt::MiddleButton)
{
MiddleButtonMousePressEvent(pEvent);
}
else if (pEvent->button() == Qt::RightButton)
{
RightButtonMousePressEvent(pEvent);
}
}
void CCurveEditor::mouseDoubleClickEvent(QMouseEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls)
{
return QWidget::mouseDoubleClickEvent(pEvent);
}
if (pEvent->button() == Qt::LeftButton)
{
auto curveHitPair = HitDetectCurve(pEvent->pos());
if (curveHitPair.first)
{
if (AddPointToCurve(curveHitPair.second, curveHitPair.first))
{
setCursor(QCursor(Qt::SizeAllCursor));
}
}
}
}
void CCurveEditor::LeftButtonMousePressEvent(QMouseEvent* pEvent)
{
const bool bCtrlPressed = (pEvent->modifiers() & Qt::CTRL) != 0;
const bool bAltPressed = (pEvent->modifiers() & Qt::ALT) != 0;
if (pEvent->y() < kRulerHeight && !(m_optOutFlags & EOptOutRuler))
{
m_pMouseHandler.reset(new SScrubHandler(this));
m_pMouseHandler->mousePressEvent(pEvent);
}
else
{
if (bCtrlPressed)
{
auto curveHitPair = HitDetectCurve(pEvent->pos());
if (curveHitPair.first)
{
if (AddPointToCurve(curveHitPair.second, curveHitPair.first))
{
setCursor(QCursor(Qt::SizeAllCursor));
}
}
}
else if (bAltPressed)
{
auto pCurveKey = HitDetectKey(pEvent->pos());
if (pCurveKey)
{
pCurveKey->MarkKeyForRemoval();
ContentChanged();
}
}
else
{
auto pTangentKey = HitDetectTangent(pEvent->pos());
if (pTangentKey)
{
SelectTangent(pTangentKey);
m_pMouseHandler.reset(new SRotateTangentHandler(this, pTangentKey));
}
else
{
auto pCurveKey = HitDetectKey(pEvent->pos());
if (pCurveKey)
{
SelectKey(pCurveKey, false);
QRectF range;
range.setLeft(m_timeRange.start);
range.setRight(m_timeRange.end);
range.setBottom(m_valueRange.start);
range.setTop(m_valueRange.end);
m_pMouseHandler.reset(new SMoveKeyHandler(this, false,
m_timeRangeEnforced ? &range : nullptr));
}
else
{
m_pMouseHandler.reset(new SSelectionHandler(this, false));
}
}
m_pMouseHandler->mousePressEvent(pEvent);
}
}
update();
}
void CCurveEditor::MiddleButtonMousePressEvent(QMouseEvent* pEvent)
{
const bool bShiftPressed = (pEvent->modifiers() & Qt::SHIFT) != 0;
if (!bShiftPressed)
{
m_pMouseHandler.reset(new SPanHandler(this));
}
else
{
m_pMouseHandler.reset(new SZoomHandler(this));
}
m_pMouseHandler->mousePressEvent(pEvent);
update();
}
void CCurveEditor::RightButtonMousePressEvent(QMouseEvent* pEvent)
{
CCurveEditorControl* pCurveKey = HitDetectKey(pEvent->pos());
if (pCurveKey)
{
SelectKey(pCurveKey, false);
update(); //Repaint so that we see that the key is selected
QMenu* pMenu = new QMenu(this);
PopulateControlContextMenu(pMenu);
pMenu->popup(pEvent->globalPos());
}
else
{
return QWidget::mousePressEvent(pEvent);
}
}
void CCurveEditor::mouseMoveEvent(QMouseEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls)
{
return QWidget::mouseMoveEvent(pEvent);
}
const CCurveEditorControl* control = HitDetectKey(pEvent->pos());
if (control)
{
if (!(m_optOutFlags & EOptOutDefaultTooltip))
{
showTooltip(control->GetKey(), pEvent->globalPos(), this, control->GetToolTip());
}
setCursor(QCursor(Qt::SizeAllCursor));
}
else
{
if (!(m_optOutFlags & EOptOutDefaultTooltip))
{
QToolTip::hideText();
}
setCursor(QCursor());
}
if (m_pMouseHandler)
{
m_pMouseHandler->mouseMoveEvent(pEvent);
}
update();
}
void CCurveEditor::mouseReleaseEvent(QMouseEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls)
{
return QWidget::mouseReleaseEvent(pEvent);
}
if (m_pMouseHandler)
{
m_pMouseHandler->mouseReleaseEvent(pEvent);
m_pMouseHandler.reset();
update();
}
}
void CCurveEditor::focusOutEvent(QFocusEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls)
{
return focusOutEvent(pEvent);
}
if (m_pMouseHandler)
{
m_pMouseHandler->focusOutEvent(pEvent);
m_pMouseHandler.reset();
update();
}
}
void CCurveEditor::wheelEvent(QWheelEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls || m_optOutFlags & EOptOutZoomingAndPanning)
{
return QWidget::wheelEvent(pEvent);
}
Vec2 windowSize((float)size().width(), (float)size().height());
windowSize.y = (windowSize.y > 0.0f) ? windowSize.y : 1.0f;
const QRect curveArea = GetCurveArea();
const float mouseXNormalized = (float)(pEvent->position().x() - curveArea.left()) / (float)curveArea.width();
const float mouseYNormalized = (float)(pEvent->position().y() - curveArea.top()) / (float)curveArea.height();
const float pivotX = (mouseXNormalized - m_translation.x) / m_zoom.x;
const float pivotY = (mouseYNormalized - m_translation.y) / m_zoom.y;
float zoomFactor = pow(1.2f, (float)pEvent->angleDelta().y() * 0.01f);
if (!m_timeRangeEnforced)
{
m_zoom.x *= zoomFactor;
}
m_zoom.y *= zoomFactor;
m_zoom.x = clamp_tpl(m_zoom.x, kMinZoom, kMaxZoom);
m_zoom.y = clamp_tpl(m_zoom.y, kMinZoom, kMaxZoom);
// Adjust translation so pivot point stays at same x and y position on screen
m_translation.x += ((mouseXNormalized - m_translation.x) / m_zoom.x - pivotX) * m_zoom.x;
m_translation.y += ((mouseYNormalized - m_translation.y) / m_zoom.y - pivotY) * m_zoom.y;
update();
}
void CCurveEditor::keyPressEvent(QKeyEvent* pEvent)
{
if (m_optOutFlags & EOptOutControls)
{
return QWidget::keyPressEvent(pEvent);
}
if (!m_pContent)
{
return;
}
QKeySequence key(pEvent->key());
if (key == QKeySequence(Qt::Key_Delete))
{
OnDeleteSelectedKeys();
}
update();
}
void CCurveEditor::SetCurveType(ECurveEditorCurveType curveType)
{
m_curveType = curveType;
}
void CCurveEditor::SetHandlesVisible(bool bVisible)
{
m_bHandlesVisible = bVisible;
update();
}
void CCurveEditor::SetRulerVisible(bool bVisible)
{
m_bRulerVisible = bVisible;
update();
}
void CCurveEditor::SetTimeSliderVisible(bool bVisible)
{
m_bTimeSliderVisible = bVisible;
update();
}
std::pair<SCurveEditorCurve*, Vec2> CCurveEditor::HitDetectCurve(const QPoint point)
{
if (!m_pContent)
{
return std::make_pair(nullptr, Vec2(ZERO));
}
SCurveEditorCurve* pNearestCurve = nullptr;
Vec2 closestPoint = Vec2(ZERO);
float nearestDistance = std::numeric_limits<float>::max();
for (auto iter = m_pContent->m_curves.rbegin(); iter != m_pContent->m_curves.rend(); ++iter)
{
SCurveEditorCurve& curve = *iter;
const Vec2 closestPointOnCurve = ClosestPointOnCurve(PointToVec2(point), curve, m_curveType);
const float distance = (PointToVec2(point) - closestPointOnCurve).GetLength();
if (distance < nearestDistance)
{
nearestDistance = distance;
pNearestCurve = &curve;
closestPoint = closestPointOnCurve;
}
}
if (nearestDistance <= kHitDistance)
{
return std::make_pair(pNearestCurve, TransformPointFromScreen(m_zoom, m_translation, GetCurveArea(), closestPoint));
}
return std::make_pair(nullptr, Vec2(ZERO));
}
CCurveEditorControl* CCurveEditor::GetSelectedCurveKey()
{
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
if (pControlKey->IsSelected())
{
return pControlKey;
}
}
return nullptr;
}
CCurveEditorControl* CCurveEditor::HitDetectKey(const QPoint point)
{
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
if (pControlKey->IsMouseWithinControl(point))
{
return pControlKey;
}
}
return NULL;
}
CCurveEditorTangentControl* CCurveEditor::HitDetectTangent(const QPoint point)
{
if (m_optOutFlags & EOptOutSelectionInOutTangent)
{
return NULL;
}
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
if (pControlKey->GetInTangent().IsMouseWithinControl(point))
{
return &pControlKey->GetInTangent();
}
else if (pControlKey->GetOutTangent().IsMouseWithinControl(point))
{
return &pControlKey->GetOutTangent();
}
}
return NULL;
}
void CCurveEditor::SelectKey(CCurveEditorControl* pControlToSelect, bool addToExistingSelection)
{
bool wasSelected = pControlToSelect->IsSelected();
if (!wasSelected)
{
if (!addToExistingSelection)
{
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
pControlKey->SetSelected(false);
}
}
pControlToSelect->SetSelected(true);
//update key selection style
updateCurveKeyShapeColor();
emit SignalKeySelected(pControlToSelect);
}
}
void CCurveEditor::SelectTangent(CCurveEditorTangentControl* pTangentToSelect)
{
bool wasSelected = pTangentToSelect->IsSelected();
if (!wasSelected)
{
for (CCurveEditorControl* pControlKey : m_pControlKeys)
{
pControlKey->SetSelected(false);
pControlKey->GetInTangent().SetSelected(false);
pControlKey->GetOutTangent().SetSelected(false);
}
pTangentToSelect->GetControl().SetSelected(true);
pTangentToSelect->SetSelected(true);
}
}
void CCurveEditor::SelectInRect(const QRect& rect)
{
if (!m_pContent || (m_optOutFlags & EOptOutSelectionKey))
{
return;
}
ForEachKey(*m_pContent, [&]([[maybe_unused]] SCurveEditorCurve& curve, SCurveEditorKey& key)
{
const Vec2 screenPoint = TransformPointToScreen(m_zoom, m_translation, GetCurveArea(), Vec2(key.m_time, key.m_value));
key.m_bSelected = rect.contains((int)screenPoint.x, (int)screenPoint.y);
});
update();
}
// Input and output are in screen space
Vec2 CCurveEditor::ClosestPointOnCurve(const Vec2 point, const SCurveEditorCurve& curve, const ECurveEditorCurveType curveType)
{
auto transformFunc = [&](Vec2 point)
{
return TransformPointToScreen(m_zoom, m_translation, GetCurveArea(), point);
};
if (curve.m_keys.size() == 0)
{
const Vec2 pointOnCurve = transformFunc(Vec2(0.0f, curve.m_defaultValue));
return Vec2(point.x, pointOnCurve.y);
}
Vec2 closestPoint;
float minDistance = std::numeric_limits<float>::max();
const Vec2 startKeyTransformed = transformFunc(Vec2(curve.m_keys.front().m_time, curve.m_keys.front().m_value));
if (point.x < startKeyTransformed.x)
{
const float distanceToCurve = std::abs(point.y - startKeyTransformed.y);
if (distanceToCurve < minDistance)
{
closestPoint = Vec2(point.x, startKeyTransformed.y);
minDistance = distanceToCurve;
}
}
const Vec2 endKeyTransformed = transformFunc(Vec2(curve.m_keys.back().m_time, curve.m_keys.back().m_value));
if (point.x > endKeyTransformed.x)
{
const float distanceToCurve = std::abs(point.y - endKeyTransformed.y);
if (distanceToCurve < minDistance)
{
closestPoint = Vec2(point.x, endKeyTransformed.y);
minDistance = distanceToCurve;
}
}
int numCustomKeys = curve.m_customInterpolator ? curve.m_customInterpolator->GetKeyCount() : 0;
if (numCustomKeys > 1
&& transformFunc(Vec2(curve.m_customInterpolator->GetKeyTime(0), 0)).x <= point.x
&& transformFunc(Vec2(curve.m_customInterpolator->GetKeyTime(numCustomKeys - 1), 0)).x >= point.x)
{
const int sampleCount = 5;
for (int sample = 0; sample < sampleCount; sample++)
{
float value;
float offset = (float)sample - floorf((float)sampleCount / 2.0f);
float t = TransformPointFromScreen(m_zoom, m_translation, GetCurveArea(), Vec2(point.x + offset, point.y)).x;
curve.m_customInterpolator->InterpolateFloat(t, value);
value = transformFunc(Vec2(0, value)).y;
const Vec2 closestOnSegment = Vec2(point.x, value);
const float distanceToSegment = (closestOnSegment - point).GetLength();
if (distanceToSegment < minDistance)
{
closestPoint = closestOnSegment;
minDistance = distanceToSegment;
}
}
}
else
{
const auto endIter = curve.m_keys.end() - 1;
for (auto iter = curve.m_keys.begin(); iter != endIter; ++iter)
{
if (curveType == eCECT_Bezier)
{
const SCurveEditorKey* pKeyLeftOfSegment = (iter != curve.m_keys.begin()) ? &*(iter - 1) : nullptr;
const SCurveEditorKey* pKeyRightOfSegment = (iter != (curve.m_keys.end() - 2)) ? &*(iter + 2) : nullptr;
const SCurveEditorKey segmentStartKey = ApplyOutTangentFlags(*iter, pKeyLeftOfSegment, *(iter + 1));
const SCurveEditorKey segmentEndKey = ApplyInTangentFlags(*(iter + 1), *iter, pKeyRightOfSegment);
const Vec2 p0 = transformFunc(Vec2(segmentStartKey.m_time, segmentStartKey.m_value));
const Vec2 p3 = transformFunc(Vec2(segmentEndKey.m_time, segmentEndKey.m_value));
const Vec2 p1 = transformFunc(Vec2(0.0f, segmentStartKey.m_value + segmentStartKey.m_outTangent.y));
const Vec2 p2 = transformFunc(Vec2(0.0f, segmentEndKey.m_value + segmentEndKey.m_inTangent.y));
const Vec2 closestOnSegment = ClosestPointOnBezierSegment(point, p0.x, p3.x, p0.y, p1.y, p2.y, p3.y);
const float distanceToSegment = (closestOnSegment - point).GetLength();
if (distanceToSegment < minDistance)
{
closestPoint = closestOnSegment;
minDistance = distanceToSegment;
}
}
}
}
return closestPoint;
}
void CCurveEditor::ContentChanged()
{
DeleteMarkedKeys();
while (!m_pControlKeys.isEmpty())
{
delete m_pControlKeys.takeFirst();
}
for (auto iter = m_pContent->m_curves.begin(); iter != m_pContent->m_curves.end(); ++iter)
{
SCurveEditorCurve& curve = *iter;
for (size_t i = 0; i < curve.m_keys.size(); ++i)
{
SCurveEditorKey& key = curve.m_keys[i];
key.m_bModified = false;
CCurveEditorControl* pControlKey = new CCurveEditorControl(*this, curve, key);
pControlKey->SetSelected(key.m_bSelected);
m_pControlKeys.append(pControlKey);
}
}
UpdateTangents();
update();
SignalContentChanged();
}
void CCurveEditor::DeleteMarkedKeys()
{
if (m_pContent)
{
bool changed = false;
// just delete the underlying key from the data model - the UI controls will be automatically updated to match the new model
for (auto iter = m_pContent->m_curves.begin(); iter != m_pContent->m_curves.end(); ++iter)
{
SCurveEditorCurve& curve = *iter;
for (auto keyIter = curve.m_keys.begin(); keyIter != curve.m_keys.end(); )
{
if (keyIter->m_bDeleted)
{
keyIter = curve.m_keys.erase(keyIter);
changed = true;
}
else
{
++keyIter;
}
}
}
}
}
bool CCurveEditor::AddPointToCurve(const Vec2 point, SCurveEditorCurve* pCurve)
{
assert(pCurve);
// Makes sure that a new point can be only added at a safe distance
if (pCurve->m_customInterpolator)
{
const float w = aznumeric_cast<float>(kPointRectExtent.x() * 2);
const float h = aznumeric_cast<float>(kPointRectExtent.y() * 2);
const float minDist = w * w + h * h;
auto keys = pCurve->m_keys;
for (int i = 0; i < keys.size(); i++)
{
const SCurveEditorKey& k = keys[i];
const Vec2 scrP0 = TransformPointToScreen(m_zoom, m_translation, GetCurveArea(), Vec2(k.m_time, k.m_value));
const Vec2 scrP1 = TransformPointToScreen(m_zoom, m_translation, GetCurveArea(), point);
const float sqrDist = (scrP1 - scrP0).GetLength2();
if (sqrDist <= minDist)
{
return false;
}
}
}
SCurveEditorKey key;
key.m_bAdded = true;
key.m_time = point.x;
float yValue;
pCurve->m_customInterpolator->InterpolateFloat(point.x, yValue);
key.m_value = pCurve->m_customInterpolator ? yValue : point.y;
// Set in/out tangents based on neighboring keys
const SCurveEditorKey* closestFromLeft = nullptr;
float closestTimeFromLeft = -std::numeric_limits<float>::max();
const SCurveEditorKey* closestFromRight = nullptr;
float closestTimeFromRight = std::numeric_limits<float>::max();
for (const SCurveEditorKey& k : pCurve->m_keys)
{
// Check left
if (k.m_time > closestTimeFromLeft && k.m_time < key.m_time)
{
closestTimeFromLeft = k.m_time;
closestFromLeft = &k;
}
// Check right
if (k.m_time < closestTimeFromRight && k.m_time > key.m_time)
{
closestTimeFromRight = k.m_time;
closestFromRight = &k;
}
}
if (closestFromLeft)
{
key.m_inTangentType = SCurveEditorKey::eTangentType_Bezier;
float value;
pCurve->m_customInterpolator->EvalInTangentFloat(key.m_time, value);
key.m_inTangent = Vec2(1.0f, value);
}
if (closestFromRight)
{
key.m_outTangentType = SCurveEditorKey::eTangentType_Bezier;
float value;
pCurve->m_customInterpolator->EvalOutTangentFloat(key.m_time, value);
key.m_outTangent = Vec2(1.0f, value);
}
pCurve->m_keys.push_back(key);
SortKeys(*pCurve);
ContentChanged();
return true;
}
void CCurveEditor::SortKeys(SCurveEditorCurve& curve)
{
std::stable_sort(curve.m_keys.begin(), curve.m_keys.end(), [](const SCurveEditorKey& a, const SCurveEditorKey& b)
{
return a.m_time < b.m_time;
});
}
QString CCurveEditor::TangentTypeToString(SCurveEditorKey::ETangentType type)
{
switch (type)
{
case SCurveEditorKey::eTangentType_Standard: // Tangent freely rotates but will stay in sync with its pair if its pair is also standard
return tr("Standard");
case SCurveEditorKey::eTangentType_Free: // Tangent is completely free moving (does not sync with its pair)
return tr("Free");
case SCurveEditorKey::eTangentType_Step: // Step immediately to value of next control point in tangent direction
return tr("Step");
case SCurveEditorKey::eTangentType_Linear: // Tangent always points to next control point
return tr("Linear");
case SCurveEditorKey::eTangentType_Smooth: // Tangent is smoothed automatically based on direction/distance to neighboring controls
return tr("Smooth");
case SCurveEditorKey::eTangentType_Flat: // Tangent is flattened (y = 0) - will still sync with its pair if both are flat
return tr("Flat");
case SCurveEditorKey::eTangentType_Bezier: // Tangent is free moving and can be justified by user. Curve defined by Bz
return tr("Bezier");
default:
break;
}
return tr("Undefined tangent!");
}
void CCurveEditor::OnDeleteSelectedKeys()
{
ForEachKey(*m_pContent, []([[maybe_unused]] SCurveEditorCurve& curve, SCurveEditorKey& key)
{
key.m_bDeleted = key.m_bDeleted || key.m_bSelected;
});
ContentChanged();
}
void CCurveEditor::OnSetSelectedKeysTangentStandard()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Standard);
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Standard);
SmoothSelectedKeys();
}
void CCurveEditor::OnSetSelectedKeysTangentSmooth()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Smooth);
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Smooth);
}
void CCurveEditor::OnSetSelectedKeysTangentFree()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Free);
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Free);
}
void CCurveEditor::OnSetSelectedKeysTangentBezier()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Bezier);
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Bezier);
}
void CCurveEditor::OnSetSelectedKeysTangentFlat()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Flat);
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Flat);
}
void CCurveEditor::OnSetSelectedKeysTangentLinear()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Linear);
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Linear);
}
void CCurveEditor::OnSetSelectedKeysInTangentFree()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Free);
}
void CCurveEditor::OnSetSelectedKeysInTangentFlat()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Flat);
}
void CCurveEditor::OnSetSelectedKeysInTangentLinear()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Linear);
}
void CCurveEditor::OnSetSelectedKeysInTangentStep()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Step);
}
void CCurveEditor::OnSetSelectedKeysInTangentBezier()
{
SetSelectedKeysTangentType(ETangent_In, SCurveEditorKey::eTangentType_Bezier);
}
void CCurveEditor::OnSetSelectedKeysOutTangentFree()
{
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Free);
}
void CCurveEditor::OnSetSelectedKeysOutTangentFlat()
{
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Flat);
}
void CCurveEditor::OnSetSelectedKeysOutTangentStep()
{
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Step);
}
void CCurveEditor::OnSetSelectedKeysOutTangentLinear()
{
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Linear);
}
void CCurveEditor::OnSetSelectedKeysOutTangentBezier()
{
SetSelectedKeysTangentType(ETangent_Out, SCurveEditorKey::eTangentType_Bezier);
}
void CCurveEditor::OnFitCurvesHorizontally()
{
if (m_timeRangeEnforced)
{
return;
}
if (m_pContent)
{
bool bAnyKeyFound = false;
float timeMin = std::numeric_limits<float>::max();
float timeMax = -std::numeric_limits<float>::max();
TCurveEditorCurves& curves = m_pContent->m_curves;
for (auto curveIter = curves.begin(); curveIter != curves.end(); ++curveIter)
{
SCurveEditorCurve& curve = *curveIter;
if (curve.m_keys.size() > 0)
{
bAnyKeyFound = true;
timeMin = std::min(curve.m_keys.front().m_time, timeMin);
timeMax = std::max(curve.m_keys.back().m_time, timeMax);
}
}
if (bAnyKeyFound)
{
ZoomToTimeRange(timeMin, timeMax);
// Adjust zoom and translation depending on kFitMargin
const float pivot = (0.5f - m_translation.x) / m_zoom.x;
m_zoom.x /= 1.0f + 2.0f * (kFitMargin / GetCurveArea().width());
m_translation.x += ((0.5f - m_translation.x) / m_zoom.x - pivot) * m_zoom.x;
update();
}
}
}
void CCurveEditor::OnFitCurvesVertically()
{
if (m_pContent)
{
bool bAnyKeyFound = false;
float valueMin = std::numeric_limits<float>::max();
float valueMax = -std::numeric_limits<float>::max();
TCurveEditorCurves& curves = m_pContent->m_curves;
for (auto curveIter = curves.begin(); curveIter != curves.end(); ++curveIter)
{
SCurveEditorCurve& curve = *curveIter;
if (m_curveType == eCECT_Bezier && curve.m_keys.size() > 0 && !curve.m_customInterpolator)
{
const auto endIter = curve.m_keys.end() - 1;
for (auto iter = curve.m_keys.begin(); iter != endIter; ++iter)
{
bAnyKeyFound = true;
const SCurveEditorKey* pKeyLeftOfSegment = (iter != curve.m_keys.begin()) ? &*(iter - 1) : nullptr;
const SCurveEditorKey* pKeyRightOfSegment = (iter != (curve.m_keys.end() - 2)) ? &*(iter + 2) : nullptr;
const SCurveEditorKey segmentStartKey = ApplyOutTangentFlags(*iter, pKeyLeftOfSegment, *(iter + 1));
const SCurveEditorKey segmentEndKey = ApplyInTangentFlags(*(iter + 1), *iter, pKeyRightOfSegment);
const Range valueRange = GetBezierSegmentValueRange(segmentStartKey, segmentEndKey);
valueMin = std::min(valueMin, valueRange.start);
valueMax = std::max(valueMax, valueRange.end);
}
}
}
if (bAnyKeyFound)
{
ZoomToValueRange(valueMin, valueMax);
// Adjust zoom and translation depending on kFitMargin
const float pivot = (0.5f - m_translation.y) / m_zoom.y;
m_zoom.y /= 1.0f + 2.0f * (kFitMargin / GetCurveArea().height());
m_translation.y += ((0.5f - m_translation.y) / m_zoom.y - pivot) * m_zoom.y;
update();
}
}
}
void CCurveEditor::SetSelectedKeysTangentType(const ETangent tangent, const SCurveEditorKey::ETangentType type)
{
if (m_pContent)
{
ForEachKey(*m_pContent, [&]([[maybe_unused]] SCurveEditorCurve& curve, SCurveEditorKey& key)
{
if (key.m_bSelected)
{
if (tangent == ETangent_In)
{
key.m_inTangentType = type;
}
else
{
key.m_outTangentType = type;
}
}
});
UpdateTangents();
update();
SignalContentChanged();
}
}
void CCurveEditor::SmoothSelectedKeys()
{
if (m_pContent)
{
for (SCurveEditorCurve& curve : m_pContent->m_curves)
{
for (int keyIx = 0; keyIx < curve.m_keys.size(); ++keyIx)
{
SCurveEditorKey& key = curve.m_keys[keyIx];
if (key.m_bSelected)
{
SCurveEditorKey* pLeftKey = (keyIx > 0) ? &curve.m_keys[keyIx - 1] : nullptr;
SCurveEditorKey* pRightKey = (keyIx + 1 < curve.m_keys.size()) ? &curve.m_keys[keyIx + 1] : nullptr;
SmoothTangents(key, key.m_inTangent, key.m_outTangent, pLeftKey, pRightKey, false);
}
}
}
UpdateTangents();
update();
}
}
void CCurveEditor::UpdateTangents()
{
for (SCurveEditorCurve& curve : m_pContent->m_curves)
{
for (int keyIx = 0; keyIx < curve.m_keys.size(); ++keyIx)
{
SCurveEditorKey& key = curve.m_keys[keyIx];
if (key.m_bAdded)
{
if (curve.m_keys.size() == 1)
{
return;
}
if (keyIx == 0)
{
SCurveEditorKey& nextKey = curve.m_keys[keyIx + 1];
key.m_outTangent = Vec2(nextKey.m_time - key.m_time, nextKey.m_value - key.m_value) / 3.0f;
key.m_inTangent = -key.m_outTangent;
}
else if (keyIx + 1 == curve.m_keys.size())
{
SCurveEditorKey& prevKey = curve.m_keys[keyIx - 1];
key.m_inTangent = Vec2(prevKey.m_time - key.m_time, prevKey.m_value - key.m_value) / 3.0f;
key.m_outTangent = -key.m_outTangent;
}
key.m_bAdded = false;
}
if (keyIx > 0)
{
SCurveEditorKey& prevKey = curve.m_keys[keyIx - 1];
switch (key.m_inTangentType)
{
case SCurveEditorKey::eTangentType_Smooth:
{
if (keyIx + 1 >= curve.m_keys.size())
{
key.m_inTangent = Vec2(prevKey.m_time - key.m_time, prevKey.m_value - key.m_value) / 3.0f;
break;
}
SCurveEditorKey& nextKey = curve.m_keys[keyIx + 1];
const float deltaTime = nextKey.m_time - prevKey.m_time;
if (deltaTime > 0.0f)
{
Vec2 normalizedIn = Vec2(prevKey.m_time - key.m_time, prevKey.m_value - key.m_value);
Vec2 normalizedOut = Vec2(nextKey.m_time - key.m_time, nextKey.m_value - key.m_value);
key.m_inTangent = GetSmoothInTangent(key, normalizedIn, normalizedOut, &prevKey, &nextKey, true);
}
break;
}
case SCurveEditorKey::eTangentType_Flat:
{
key.m_inTangent = Vec2(prevKey.m_time - key.m_time, 0.0f) / 3.0f;
break;
}
case SCurveEditorKey::eTangentType_Step:
{
//key.m_inTangent = Vec2(0.0f, 0.0f);
break;
}
case SCurveEditorKey::eTangentType_Linear:
{
key.m_inTangent = Vec2(prevKey.m_time - key.m_time, prevKey.m_value - key.m_value) / 3.0f;
break;
}
default:
{
const float oneThirdDeltaTime = (key.m_time - prevKey.m_time) / 3.0f;
float ratio = oneThirdDeltaTime / -key.m_inTangent.x;
key.m_inTangent *= ratio;
break;
}
}
}
if (keyIx + 1 < curve.m_keys.size())
{
SCurveEditorKey& nextKey = curve.m_keys[keyIx + 1];
switch (key.m_outTangentType)
{
case SCurveEditorKey::eTangentType_Smooth:
{
if (keyIx <= 0)
{
key.m_outTangent = Vec2(nextKey.m_time - key.m_time, nextKey.m_value - key.m_value) / 3.0f;
}
if (keyIx > 0)
{
SCurveEditorKey& prevKey = curve.m_keys[keyIx - 1];
const float deltaTime = nextKey.m_time - prevKey.m_time;
if (deltaTime > 0.0f)
{
Vec2 normalizedIn = Vec2(prevKey.m_time - key.m_time, prevKey.m_value - key.m_value);
Vec2 normalizedOut = Vec2(nextKey.m_time - key.m_time, nextKey.m_value - key.m_value);
key.m_outTangent = GetSmoothOutTangent(key, normalizedIn, normalizedOut, &prevKey, &nextKey, true);
}
}
break;
}
case SCurveEditorKey::eTangentType_Flat:
{
key.m_outTangent = Vec2(nextKey.m_time - key.m_time, 0.0f) / 3.0f;
break;
}
case SCurveEditorKey::eTangentType_Step:
{
//key.m_outTangent = Vec2(0.0f, 0.0f);
break;
}
case SCurveEditorKey::eTangentType_Linear:
{
key.m_outTangent = Vec2(nextKey.m_time - key.m_time, nextKey.m_value - key.m_value) / 3.0f;
break;
}
default:
{
const float oneThirdDeltaTime = (nextKey.m_time - key.m_time) / 3.0f;
float ratio = oneThirdDeltaTime / key.m_outTangent.x;
key.m_outTangent *= ratio;
break;
}
}
}
}
}
}
QRect CCurveEditor::GetCurveArea()
{
const uint rulerAreaHeight = m_bRulerVisible ? kRulerHeight : 0;
return QRect(0, rulerAreaHeight, width(), height() - rulerAreaHeight);
}
Vec2 CCurveEditor::TransformToScreenCoordinates(Vec2 graphPoint)
{
return TransformPointToScreen(m_zoom, m_translation, GetCurveArea(), graphPoint);
}
Vec2 CCurveEditor::TransformFromScreenCoordinates(Vec2 screenPoint)
{
return TransformPointFromScreen(m_zoom, m_translation, GetCurveArea(), screenPoint);
}
void CCurveEditor::SetOptOutFlags(int flags)
{
m_optOutFlags = flags;
if (m_optOutFlags & EOptOutRuler)
{
m_bRulerVisible = false;
}
}
void CCurveEditor::PopulateControlContextMenu(QMenu* pMenu)
{
#define OPTOUT(BITS) ((m_optOutFlags & (BITS)))
bool needsSeperator = false;
pMenu->addAction("Delete selected keys", this, SLOT(OnDeleteSelectedKeys()));
pMenu->addSeparator();
// standard and smooth should only be available for both - flat, free, step, and linear should be available for all
const int flagsFreeStep = EOptOutFree | EOptOutStep;
if (OPTOUT(flagsFreeStep) != flagsFreeStep)
{
pMenu->addAction("Standard", this, SLOT(OnSetSelectedKeysTangentStandard()));
pMenu->addAction("Auto Smooth", this, SLOT(OnSetSelectedKeysTangentSmooth()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFree))
{
pMenu->addAction("Free", this, SLOT(OnSetSelectedKeysTangentFree()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutBezier))
{
pMenu->addAction("Bezier", this, SLOT(OnSetSelectedKeysTangentBezier()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFlat))
{
pMenu->addAction("Flat", this, SLOT(OnSetSelectedKeysTangentFlat()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutLinear))
{
pMenu->addAction("Linear", this, SLOT(OnSetSelectedKeysTangentLinear()));
needsSeperator = true;
}
if (needsSeperator)
{
pMenu->addSeparator();
}
needsSeperator = false;
if (!OPTOUT(EOptOutBezier))
{
pMenu->addAction("IN Tangent - Bezier", this, SLOT(OnSetSelectedKeysInTangentBezier()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFree))
{
pMenu->addAction("IN Tangent - Free", this, SLOT(OnSetSelectedKeysInTangentFree()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFlat))
{
pMenu->addAction("IN Tangent - Flat", this, SLOT(OnSetSelectedKeysInTangentFlat()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutLinear))
{
pMenu->addAction("IN Tangent - Linear", this, SLOT(OnSetSelectedKeysInTangentLinear()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutStep))
{
pMenu->addAction("IN Tangent - Step", this, SLOT(OnSetSelectedKeysInTangentStep()));
needsSeperator = true;
}
if (needsSeperator)
{
pMenu->addSeparator();
}
needsSeperator = false;
if (!OPTOUT(EOptOutBezier))
{
pMenu->addAction("OUT Tangent - Bezier", this, SLOT(OnSetSelectedKeysOutTangentBezier()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFree))
{
pMenu->addAction("OUT Tangent - Free", this, SLOT(OnSetSelectedKeysOutTangentFree()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFlat))
{
pMenu->addAction("OUT Tangent - Flat", this, SLOT(OnSetSelectedKeysOutTangentFlat()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutLinear))
{
pMenu->addAction("OUT Tangent - Linear", this, SLOT(OnSetSelectedKeysOutTangentLinear()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutStep))
{
pMenu->addAction("OUT Tangent - Step", this, SLOT(OnSetSelectedKeysOutTangentStep()));
needsSeperator = true;
}
if (!OPTOUT(EOptOutFitCurvesContextMenuOptions))
{
if (needsSeperator)
{
pMenu->addSeparator();
}
needsSeperator = false;
pMenu->addAction("Fit curves horizontally", this, SLOT(OnFitCurvesHorizontally()));
pMenu->addAction("Fit curves vertically", this, SLOT(OnFitCurvesVertically()));
}
}
void CCurveEditor::setPenColor(QColor color)
{
if (color.isValid())
{
m_penColor = color;
}
else if (!m_penColor.isValid())
{
m_penColor = palette().highlight().color();
}
}
void CCurveEditor::updateCurveKeyShapeColor()
{
for (CCurveEditorControl* key : m_pControlKeys)
{
QColor color = key->IsSelected() ? QColor(Qt::yellow) : QColor(Qt::white);
key->SetIconShapeColor(color);
}
}
void CCurveEditor::SetIconShapeColor(unsigned int key, QColor color)
{
m_pControlKeys[key]->SetIconShapeColor(color);
}
void CCurveEditor::SetIconFillColor(unsigned int key, QColor color)
{
m_pControlKeys[key]->SetIconFillColor(color);
}
void CCurveEditor::SetIconImage(QString str)
{
for (auto* key : m_pControlKeys)
{
key->SetIconImage(str);
}
}
void CCurveEditor::SetIconShapeMask(QColor color)
{
for (auto* key : m_pControlKeys)
{
key->SetIconShapeMask(color);
}
}
void CCurveEditor::SetIconFillMask(QColor color)
{
for (auto* key : m_pControlKeys)
{
key->SetIconFillMask(color);
}
}
void CCurveEditor::SetIconToolTip(unsigned int key, QString str)
{
m_pControlKeys[key]->SetIconToolTip(str);
}
void CCurveEditor::SetIconSize(unsigned int key, unsigned int size)
{
m_pControlKeys[key]->SetIconSize(size);
m_pControlKeys[key]->SetVisualSize(size);
m_pControlKeys[key]->SetClickableSize(size);
}