You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
5.5 KiB
C++
199 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) Contributors to the Open 3D Engine Project.
|
|
* For complete copyright and license terms please see the LICENSE at the root of this distribution.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 OR MIT
|
|
*
|
|
*/
|
|
|
|
#include <AzCore/Math/MathUtils.h>
|
|
#include <AzCore/Math/Matrix3x3.h>
|
|
|
|
#include <Source/Pipeline/PrimitiveShapeFitter/Utils.h>
|
|
|
|
namespace PhysX::Pipeline
|
|
{
|
|
Vector operator+(const Vector& lhs, const Vector& rhs)
|
|
{
|
|
return Vector{{
|
|
lhs[0] + rhs[0],
|
|
lhs[1] + rhs[1],
|
|
lhs[2] + rhs[2]
|
|
}};
|
|
}
|
|
|
|
Vector operator-(const Vector& lhs, const Vector& rhs)
|
|
{
|
|
return Vector{{
|
|
lhs[0] - rhs[0],
|
|
lhs[1] - rhs[1],
|
|
lhs[2] - rhs[2]
|
|
}};
|
|
}
|
|
|
|
Vector operator*(const Vector& vector, const double scalar)
|
|
{
|
|
return Vector{{
|
|
vector[0] * scalar,
|
|
vector[1] * scalar,
|
|
vector[2] * scalar
|
|
}};
|
|
}
|
|
|
|
Vector operator*(const double scalar, const Vector& vector)
|
|
{
|
|
return vector * scalar;
|
|
}
|
|
|
|
Vector operator/(const Vector& vector, const double scalar)
|
|
{
|
|
return Vector{{
|
|
vector[0] / scalar,
|
|
vector[1] / scalar,
|
|
vector[2] / scalar
|
|
}};
|
|
}
|
|
|
|
Vector Cross(const Vector& lhs, const Vector& rhs)
|
|
{
|
|
return Vector{{
|
|
lhs[1] * rhs[2] - lhs[2] * rhs[1],
|
|
lhs[2] * rhs[0] - lhs[0] * rhs[2],
|
|
lhs[0] * rhs[1] - lhs[1] * rhs[0]
|
|
}};
|
|
}
|
|
|
|
double Dot(const Vector& lhs, const Vector& rhs)
|
|
{
|
|
return lhs[0] * rhs[0] + lhs[1] * rhs[1] + lhs[2] * rhs[2];
|
|
}
|
|
|
|
double NormSquared(const Vector& vector)
|
|
{
|
|
return Dot(vector, vector);
|
|
}
|
|
|
|
double Norm(const Vector& vector)
|
|
{
|
|
return sqrt(NormSquared(vector));
|
|
}
|
|
|
|
Vector ComputeAnyOrthogonalVector(const Vector& vector)
|
|
{
|
|
double invLength = 1.0;
|
|
|
|
if (fabs(vector[0]) > fabs(vector[1]))
|
|
{
|
|
invLength /= sqrt(vector[0] * vector[0] + vector[2] * vector[2]);
|
|
return Vector{{ -vector[2] * invLength, 0.0, vector[0] * invLength }};
|
|
}
|
|
else
|
|
{
|
|
invLength /= sqrt(vector[1] * vector[1] + vector[2] * vector[2]);
|
|
return Vector{{ 0.0, vector[2] * invLength, -vector[1] * invLength }};
|
|
}
|
|
}
|
|
|
|
AZ::Vector3 VecToAZVec3(const Vector& vector)
|
|
{
|
|
return AZ::Vector3((float)vector[0], (float)vector[1], (float)vector[2]);
|
|
}
|
|
|
|
AZ::Transform CreateTransformFromCoordinateSystem(
|
|
const Vector& origin,
|
|
const Vector& xAxis,
|
|
const Vector& yAxis,
|
|
const Vector& zAxis
|
|
)
|
|
{
|
|
return AZ::Transform::CreateFromMatrix3x3AndTranslation(
|
|
AZ::Matrix3x3::CreateFromColumns(
|
|
VecToAZVec3(xAxis),
|
|
VecToAZVec3(yAxis),
|
|
VecToAZVec3(zAxis)),
|
|
VecToAZVec3(origin)
|
|
);
|
|
}
|
|
|
|
Vector RotationMatrixToEulerAngles(const Vector& xAxis, const Vector& yAxis, const Vector& zAxis)
|
|
{
|
|
Vector theta{{0.0, 0.0, 0.0}};
|
|
|
|
if (zAxis[0] < 1.0)
|
|
{
|
|
if (zAxis[0] > -1.0)
|
|
{
|
|
theta[1] = asin(zAxis[0]);
|
|
theta[0] = atan2(-zAxis[1], zAxis[2]);
|
|
theta[2] = atan2(-yAxis[0], xAxis[0]);
|
|
}
|
|
else
|
|
{
|
|
// Not a unique solution.
|
|
theta[1] = -OneHalfPi;
|
|
theta[0] = -atan2(xAxis[1], yAxis[1]);
|
|
theta[2] = 0.0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Not a unique solution.
|
|
theta[1] = OneHalfPi;
|
|
theta[0] = atan2(xAxis[1], yAxis[1]);
|
|
theta[2] = 0.0;
|
|
}
|
|
|
|
return theta;
|
|
}
|
|
|
|
Vector EulerAnglesToBasisX(const Vector& theta)
|
|
{
|
|
return Vector{{
|
|
cos(theta[1]) * cos(theta[2]),
|
|
cos(theta[2]) * sin(theta[0]) * sin(theta[1]) + cos(theta[0]) * sin(theta[2]),
|
|
-cos(theta[0]) * cos(theta[2]) * sin(theta[1]) + sin(theta[0]) * sin(theta[2])
|
|
}};
|
|
}
|
|
|
|
Vector EulerAnglesToBasisY(const Vector& theta)
|
|
{
|
|
return Vector{{
|
|
-cos(theta[1]) * sin(theta[2]),
|
|
cos(theta[0]) * cos(theta[2]) - sin(theta[0]) * sin(theta[1]) * sin(theta[2]),
|
|
cos(theta[2]) * sin(theta[0]) + cos(theta[0]) * sin(theta[1]) * sin(theta[2])
|
|
}};
|
|
}
|
|
|
|
Vector EulerAnglesToBasisZ(const Vector& theta)
|
|
{
|
|
return Vector{{
|
|
sin(theta[1]),
|
|
-cos(theta[1]) * sin(theta[0]),
|
|
cos(theta[0]) * cos(theta[1])
|
|
}};
|
|
}
|
|
|
|
bool IsAbsoluteValueWithinEpsilon(double value, const double epsilon)
|
|
{
|
|
// This function checks whether a value's magnitude is within a given threshold. The default value has been
|
|
// chosen to be close enough to zero for all practical purposes but still be representable as a single precision
|
|
// floating point number.
|
|
value = fabs(value);
|
|
return value <= epsilon;
|
|
}
|
|
|
|
bool IsAbsolueValueRatioWithinThreshold(double valueOne, double valueTwo, const double threshold)
|
|
{
|
|
// This function checks whether the magnitude of the ratio of two numbers is within a given threshold.
|
|
valueOne = fabs(valueOne);
|
|
valueTwo = fabs(valueTwo);
|
|
|
|
if (valueTwo > valueOne)
|
|
{
|
|
AZStd::swap(valueOne, valueTwo);
|
|
}
|
|
|
|
return valueOne > 0.0 && valueTwo > 0.0 && valueTwo / valueOne >= threshold;
|
|
}
|
|
} // PhysX::Pipeline
|