You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/PhysX/Code/Source/Pipeline/PrimitiveShapeFitter/Utils.cpp

199 lines
5.5 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project.
* For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#include <AzCore/Math/MathUtils.h>
#include <AzCore/Math/Matrix3x3.h>
#include <Source/Pipeline/PrimitiveShapeFitter/Utils.h>
namespace PhysX::Pipeline
{
Vector operator+(const Vector& lhs, const Vector& rhs)
{
return Vector{{
lhs[0] + rhs[0],
lhs[1] + rhs[1],
lhs[2] + rhs[2]
}};
}
Vector operator-(const Vector& lhs, const Vector& rhs)
{
return Vector{{
lhs[0] - rhs[0],
lhs[1] - rhs[1],
lhs[2] - rhs[2]
}};
}
Vector operator*(const Vector& vector, const double scalar)
{
return Vector{{
vector[0] * scalar,
vector[1] * scalar,
vector[2] * scalar
}};
}
Vector operator*(const double scalar, const Vector& vector)
{
return vector * scalar;
}
Vector operator/(const Vector& vector, const double scalar)
{
return Vector{{
vector[0] / scalar,
vector[1] / scalar,
vector[2] / scalar
}};
}
Vector Cross(const Vector& lhs, const Vector& rhs)
{
return Vector{{
lhs[1] * rhs[2] - lhs[2] * rhs[1],
lhs[2] * rhs[0] - lhs[0] * rhs[2],
lhs[0] * rhs[1] - lhs[1] * rhs[0]
}};
}
double Dot(const Vector& lhs, const Vector& rhs)
{
return lhs[0] * rhs[0] + lhs[1] * rhs[1] + lhs[2] * rhs[2];
}
double NormSquared(const Vector& vector)
{
return Dot(vector, vector);
}
double Norm(const Vector& vector)
{
return sqrt(NormSquared(vector));
}
Vector ComputeAnyOrthogonalVector(const Vector& vector)
{
double invLength = 1.0;
if (fabs(vector[0]) > fabs(vector[1]))
{
invLength /= sqrt(vector[0] * vector[0] + vector[2] * vector[2]);
return Vector{{ -vector[2] * invLength, 0.0, vector[0] * invLength }};
}
else
{
invLength /= sqrt(vector[1] * vector[1] + vector[2] * vector[2]);
return Vector{{ 0.0, vector[2] * invLength, -vector[1] * invLength }};
}
}
AZ::Vector3 VecToAZVec3(const Vector& vector)
{
return AZ::Vector3((float)vector[0], (float)vector[1], (float)vector[2]);
}
AZ::Transform CreateTransformFromCoordinateSystem(
const Vector& origin,
const Vector& xAxis,
const Vector& yAxis,
const Vector& zAxis
)
{
return AZ::Transform::CreateFromMatrix3x3AndTranslation(
AZ::Matrix3x3::CreateFromColumns(
VecToAZVec3(xAxis),
VecToAZVec3(yAxis),
VecToAZVec3(zAxis)),
VecToAZVec3(origin)
);
}
Vector RotationMatrixToEulerAngles(const Vector& xAxis, const Vector& yAxis, const Vector& zAxis)
{
Vector theta{{0.0, 0.0, 0.0}};
if (zAxis[0] < 1.0)
{
if (zAxis[0] > -1.0)
{
theta[1] = asin(zAxis[0]);
theta[0] = atan2(-zAxis[1], zAxis[2]);
theta[2] = atan2(-yAxis[0], xAxis[0]);
}
else
{
// Not a unique solution.
theta[1] = -OneHalfPi;
theta[0] = -atan2(xAxis[1], yAxis[1]);
theta[2] = 0.0;
}
}
else
{
// Not a unique solution.
theta[1] = OneHalfPi;
theta[0] = atan2(xAxis[1], yAxis[1]);
theta[2] = 0.0;
}
return theta;
}
Vector EulerAnglesToBasisX(const Vector& theta)
{
return Vector{{
cos(theta[1]) * cos(theta[2]),
cos(theta[2]) * sin(theta[0]) * sin(theta[1]) + cos(theta[0]) * sin(theta[2]),
-cos(theta[0]) * cos(theta[2]) * sin(theta[1]) + sin(theta[0]) * sin(theta[2])
}};
}
Vector EulerAnglesToBasisY(const Vector& theta)
{
return Vector{{
-cos(theta[1]) * sin(theta[2]),
cos(theta[0]) * cos(theta[2]) - sin(theta[0]) * sin(theta[1]) * sin(theta[2]),
cos(theta[2]) * sin(theta[0]) + cos(theta[0]) * sin(theta[1]) * sin(theta[2])
}};
}
Vector EulerAnglesToBasisZ(const Vector& theta)
{
return Vector{{
sin(theta[1]),
-cos(theta[1]) * sin(theta[0]),
cos(theta[0]) * cos(theta[1])
}};
}
bool IsAbsoluteValueWithinEpsilon(double value, const double epsilon)
{
// This function checks whether a value's magnitude is within a given threshold. The default value has been
// chosen to be close enough to zero for all practical purposes but still be representable as a single precision
// floating point number.
value = fabs(value);
return value <= epsilon;
}
bool IsAbsolueValueRatioWithinThreshold(double valueOne, double valueTwo, const double threshold)
{
// This function checks whether the magnitude of the ratio of two numbers is within a given threshold.
valueOne = fabs(valueOne);
valueTwo = fabs(valueTwo);
if (valueTwo > valueOne)
{
AZStd::swap(valueOne, valueTwo);
}
return valueOne > 0.0 && valueTwo > 0.0 && valueTwo / valueOne >= threshold;
}
} // PhysX::Pipeline