You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/Atom/Feature/Common/Code/Source/SkinnedMesh/SkinnedMeshFeatureProcessor...

377 lines
18 KiB
C++

/*
* All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or
* its licensors.
*
* For complete copyright and license terms please see the LICENSE at the root of this
* distribution (the "License"). All use of this software is governed by the License,
* or, if provided, by the license below or the license accompanying this file. Do not
* remove or modify any license notices. This file is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
*/
#include <Atom/Feature/SkinnedMesh/SkinnedMeshFeatureProcessorBus.h>
#include <Atom/Feature/SkinnedMesh/SkinnedMeshStatsBus.h>
#include <Atom/Feature/Mesh/MeshFeatureProcessor.h>
#include <SkinnedMesh/SkinnedMeshFeatureProcessor.h>
#include <SkinnedMesh/SkinnedMeshRenderProxy.h>
#include <SkinnedMesh/SkinnedMeshComputePass.h>
#include <MorphTargets/MorphTargetComputePass.h>
#include <MorphTargets/MorphTargetDispatchItem.h>
#include <Atom/RPI.Public/Model/ModelLodUtils.h>
#include <Atom/RPI.Public/Pass/PassSystemInterface.h>
#include <Atom/RPI.Public/RPIUtils.h>
#include <Atom/RPI.Public/Shader/Shader.h>
#include <Atom/RHI/CpuProfiler.h>
#include <AzCore/Debug/EventTrace.h>
#include <AzCore/Jobs/JobCompletion.h>
#include <AzCore/Jobs/JobFunction.h>
#include <AzCore/RTTI/TypeInfo.h>
#include <AzCore/Serialization/SerializeContext.h>
namespace AZ
{
namespace Render
{
const char* SkinnedMeshFeatureProcessor::s_featureProcessorName = "SkinnedMeshFeatureProcessor";
void SkinnedMeshFeatureProcessor::Reflect(ReflectContext* context)
{
if (auto* serializeContext = azrtti_cast<SerializeContext*>(context))
{
serializeContext
->Class<SkinnedMeshFeatureProcessor, FeatureProcessor>()
->Version(0);
}
}
void SkinnedMeshFeatureProcessor::Activate()
{
m_statsCollector = AZStd::make_unique<SkinnedMeshStatsCollector>(this);
EnableSceneNotification();
}
void SkinnedMeshFeatureProcessor::Deactivate()
{
DisableSceneNotification();
m_statsCollector = nullptr;
AZ_Warning("SkinnedMeshFeatureProcessor", m_renderProxies.size() == 0,
"Deactivaing the SkinnedMeshFeatureProcessor, but there are still outstanding render proxy handles. Components\n"
"using SkinnedMeshRenderProxy handles should free them before the SkinnedMeshFeatureProcessor is deactivated.\n"
);
}
void SkinnedMeshFeatureProcessor::Simulate(const FeatureProcessor::SimulatePacket& packet)
{
AZ_PROFILE_FUNCTION(Debug::ProfileCategory::AzRender);
AZ_ATOM_PROFILE_FUNCTION("SkinnedMesh", "SkinnedMeshFeatureProcessor: Simulate");
AZ_UNUSED(packet);
SkinnedMeshFeatureProcessorNotificationBus::Broadcast(&SkinnedMeshFeatureProcessorNotificationBus::Events::OnUpdateSkinningMatrices);
}
void SkinnedMeshFeatureProcessor::Render(const FeatureProcessor::RenderPacket& packet)
{
AZ_PROFILE_FUNCTION(Debug::ProfileCategory::AzRender);
AZ_ATOM_PROFILE_FUNCTION("SkinnedMesh", "SkinnedMeshFeatureProcessor: Render");
if (!m_skinningPass)
{
return;
}
#if 0 //[GFX_TODO][ATOM-13564] Temporarily disable skinning culling until we figure out how to hook up visibility & lod selection with skinning:
//Setup the culling workgroup (it will be re-used for each view)
{
AZ_PROFILE_SCOPE(Debug::ProfileCategory::AzRender, "set up skinned culling workgroup");
azsnprintf(m_workgroup.m_name, AZ_ARRAY_SIZE(m_workgroup.m_name), "SkinnedMeshFP workgroup");
m_workgroup.m_drawListMask.reset();
m_workgroup.m_cullPackets.clear();
m_lodPackets.clear();
m_potentiallyVisibleProxies.clear();
for (SkinnedMeshRenderProxy& renderProxy : m_renderProxies)
{
renderProxy.m_isQueuedForCompile = false;
if (renderProxy.m_inputBuffers->IsUploadPending())
{
renderProxy.m_inputBuffers->WaitForUpload();
}
if (renderProxy.m_instance->m_model->IsUploadPending())
{
renderProxy.m_instance->m_model->WaitForUpload();
}
//Note: we are creating pointers to the meshDataInstance cullpacket and lod packet here,
//and holding them until the skinnedMeshDispatchItems are dispatched. There is an assumption that the underlying
//data will not move during this phase.
MeshDataInstance& meshDataInstance = **renderProxy.m_meshHandle;
m_workgroup.m_cullPackets.push_back(&meshDataInstance.GetCullPacket());
m_workgroup.m_drawListMask |= meshDataInstance.GetCullPacket().m_drawListMask;
m_lodPackets.push_back(&meshDataInstance.GetLodPacket());
m_potentiallyVisibleProxies.push_back(&renderProxy);
}
}
if (m_workgroup.m_cullPackets.size() > 0)
{
RPI::CullingSystem* cullingSystem = packet.m_cullingSystem;
Job* currentJob = JobContext::GetGlobalContext()->GetJobManager().GetCurrentJob();
//Dispatch the workgroup to each view
for (const RPI::ViewPtr& viewPtr : packet.m_views)
{
Job *processWorkgroupJob = AZ::CreateJobFunction(
[this, cullingSystem, viewPtr](AZ::Job& thisJob)
{
AZ_PROFILE_SCOPE_DYNAMIC(Debug::ProfileCategory::AzRender, "skinningMeshFP processWorkgroupJob - View: %s", viewPtr->GetName().GetCStr());
auto dispatchSkinningComputeProgramsCallback = [this](AZStd::shared_ptr<RPI::CullingBatchResults> results) -> void
{
AZ_PROFILE_SCOPE(Debug::ProfileCategory::AzRender, "dispatchSkinningComputePrograms");
//the [1][1] element of a projection matrix stores cot(FovY/2) (equal to 2*nearPlaneDistance/nearPlaneHeight),
//which is used to determine the (vertical) projected size in screen space
const float yScale = results->m_viewPtr->GetViewToClipMatrix().GetRow(1).GetY();
const Vector3 cameraPos = results->m_viewPtr->GetViewToWorldMatrix().GetTranslation();
const bool isPerspective = (results->m_viewPtr->GetViewToClipMatrix().GetElement(3, 3) == 0.f);
for (size_t v = 0, numVisibleItems = results->m_visibleItems.size(); v < numVisibleItems; ++v)
{
uint8_t relativeIndex = results->m_visibleItems[v];
uint32_t itemIndex = results->m_rangeFirst + relativeIndex;
const RPI::LodPacket* lodPacket = m_lodPackets[itemIndex];
Vector3 pos = m_workgroup.m_cullPackets[itemIndex]->m_boundingSphere.GetCenter();
SkinnedMeshRenderProxy* renderProxy = m_potentiallyVisibleProxies[itemIndex];
const float approxScreenPercentage = RPI::ModelLodUtils::ApproxScreenPercentage(
pos, lodPacket->m_lodSelectionRadius, cameraPos, yScale, isPerspective);
for (size_t lodIndex = 0, numLods = lodPacket->m_lods.size(); lodIndex < numLods; ++lodIndex)
{
const RPI::LodPacket::Lod& lod = lodPacket->m_lods[lodIndex];
//Note that this supports overlapping lod ranges (to support cross-fading lods, for example)
float minScreenPercentage(lod.m_range.m_min);
float maxScreenPercentage(lod.m_range.m_max);
if (approxScreenPercentage >= minScreenPercentage && approxScreenPercentage <= maxScreenPercentage)
{
m_skinningPass->AddDispatchItem(&renderProxy->m_dispatchItemsByLod[lodIndex]->GetRHIDispatchItem());
}
}
}
};
cullingSystem->DispatchCullingWorkgroup(viewPtr, m_workgroup, &thisJob, dispatchSkinningComputeProgramsCallback);
},
true, nullptr); //auto-deletes
currentJob->SetContinuation(processWorkgroupJob);
processWorkgroupJob->Start();
}
}
#else //[GFX_TODO][ATOM-13564] This is a temporary implementation that submits all of the skinning compute shaders without any culling:
for (SkinnedMeshRenderProxy& renderProxy : m_renderProxies)
{
renderProxy.m_isQueuedForCompile = false;
if (renderProxy.m_inputBuffers->IsUploadPending())
{
renderProxy.m_inputBuffers->WaitForUpload();
}
if (renderProxy.m_instance->m_model->IsUploadPending())
{
renderProxy.m_instance->m_model->WaitForUpload();
}
MeshDataInstance& meshDataInstance = **renderProxy.m_meshHandle;
const RPI::Cullable& cullable = meshDataInstance.GetCullable();
for (const RPI::ViewPtr& viewPtr : packet.m_views)
{
RPI::View* view = viewPtr.get();
const Matrix4x4& viewToClip = view->GetViewToClipMatrix();
//[GFX_TODO][ATOM-13564]:
// Option 1)
// store the lastVisibleFrameIndex and lowestLodIndex (or a bitfield of the visible lods) on the Cullable,
// ** run this code *after* culling is done **, use the cached info to decide what to dispatch here
// Option 2)
// add a separate visibility entry for each skinned object to the IVisibilitySystem (with a different type flag),
// ensure the entries are kept in sync with the corresponding mesh entry
// do the enumeration for each view, keep track of the lowest lod for each entry,
// and submit the appropriate dispatch item
//the [1][1] element of a perspective projection matrix stores cot(FovY/2) (equal to 2*nearPlaneDistance/nearPlaneHeight),
//which is used to determine the (vertical) projected size in screen space
const float yScale = viewToClip.GetElement(1, 1);
const bool isPerspective = viewToClip.GetElement(3, 3) == 0.f;
const Vector3 cameraPos = view->GetViewToWorldMatrix().GetTranslation();
const Vector3 pos = cullable.m_cullData.m_boundingSphere.GetCenter();
const float approxScreenPercentage = RPI::ModelLodUtils::ApproxScreenPercentage(
pos, cullable.m_lodData.m_lodSelectionRadius, cameraPos, yScale, isPerspective);
for (size_t lodIndex = 0; lodIndex < cullable.m_lodData.m_lods.size(); ++lodIndex)
{
const RPI::Cullable::LodData::Lod& lod = cullable.m_lodData.m_lods[lodIndex];
//Note that this supports overlapping lod ranges (to support cross-fading lods, for example)
if (approxScreenPercentage >= lod.m_screenCoverageMin && approxScreenPercentage <= lod.m_screenCoverageMax)
{
m_skinningPass->AddDispatchItem(&renderProxy.m_dispatchItemsByLod[lodIndex]->GetRHIDispatchItem());
for (size_t morphTargetIndex = 0; morphTargetIndex < renderProxy.m_morphTargetDispatchItemsByLod[lodIndex].size(); morphTargetIndex++)
{
const MorphTargetDispatchItem* dispatchItem = renderProxy.m_morphTargetDispatchItemsByLod[lodIndex][morphTargetIndex].get();
if (dispatchItem && dispatchItem->GetWeight() > AZ::Constants::FloatEpsilon)
{
m_morphTargetPass->AddDispatchItem(&dispatchItem->GetRHIDispatchItem());
}
}
}
}
}
}
#endif
}
void SkinnedMeshFeatureProcessor::OnRenderPipelineAdded([[maybe_unused]] RPI::RenderPipelinePtr pipeline)
{
InitSkinningAndMorphPass();
}
void SkinnedMeshFeatureProcessor::OnRenderPipelineRemoved([[maybe_unused]] RPI::RenderPipeline* pipeline)
{
InitSkinningAndMorphPass();
}
void SkinnedMeshFeatureProcessor::OnRenderPipelinePassesChanged([[maybe_unused]] RPI::RenderPipeline* renderPipeline)
{
InitSkinningAndMorphPass();
}
void SkinnedMeshFeatureProcessor::OnBeginPrepareRender()
{
m_renderProxiesChecker.soft_lock();
}
void SkinnedMeshFeatureProcessor::OnEndPrepareRender()
{
m_renderProxiesChecker.soft_unlock();
}
SkinnedMeshRenderProxyHandle SkinnedMeshFeatureProcessor::AcquireRenderProxy(const SkinnedMeshRenderProxyDesc& desc)
{
// don't need to check the concurrency during emplace() because the StableDynamicArray won't move the other elements during insertion
SkinnedMeshRenderProxyHandle handle = m_renderProxies.emplace(desc);
if (!handle->Init(*GetParentScene(), this))
{
m_renderProxies.erase(handle);
}
return handle;
}
bool SkinnedMeshFeatureProcessor::ReleaseRenderProxy(SkinnedMeshRenderProxyHandle& handle)
{
if (handle.IsValid())
{
AZStd::concurrency_check_scope scopeCheck(m_renderProxiesChecker);
m_renderProxies.erase(handle);
return true;
}
return false;
}
void SkinnedMeshFeatureProcessor::InitSkinningAndMorphPass()
{
m_skinningPass = nullptr; //reset it to null, just in case it fails to load the assets properly
m_morphTargetPass = nullptr;
RPI::PassSystemInterface* passSystem = RPI::PassSystemInterface::Get();
if (passSystem->HasPassesForTemplateName(AZ::Name{ "SkinningPassTemplate" }))
{
auto& skinningPasses = passSystem->GetPassesForTemplateName(AZ::Name{ "SkinningPassTemplate" });
// For now, assume one skinning pass
if (!skinningPasses.empty() && skinningPasses[0])
{
m_skinningPass = static_cast<SkinnedMeshComputePass*>(skinningPasses[0]);
const Data::Instance<RPI::Shader> shader = m_skinningPass->GetShader();
if (!shader)
{
AZ_Error(s_featureProcessorName, false, "Failed to get skinning pass shader. It may need to finish processing.");
}
}
else
{
AZ_Error(s_featureProcessorName, false, "\"SkinningPassTemplate\" does not have any valid passes. Check your game project's .pass assets.");
}
}
else
{
AZ_Error(s_featureProcessorName, false, "Failed to find passes for \"SkinningPassTemplate\". Check your game project's .pass assets.");
}
if (passSystem->HasPassesForTemplateName(AZ::Name{ "MorphTargetPassTemplate" }))
{
auto& morphTargetPasses = passSystem->GetPassesForTemplateName(AZ::Name{ "MorphTargetPassTemplate" });
// For now, assume one skinning pass
if (!morphTargetPasses.empty() && morphTargetPasses[0])
{
m_morphTargetPass = static_cast<MorphTargetComputePass*>(morphTargetPasses[0]);
const Data::Instance<RPI::Shader> shader = m_morphTargetPass->GetShader();
if (!shader)
{
AZ_Error(s_featureProcessorName, false, "Failed to get morph target pass shader. It may need to finish processing.");
}
}
else
{
AZ_Error(s_featureProcessorName, false, "\"MorphTargetPassTemplate\" does not have any valid passes. Check your game project's .pass assets.");
}
}
else
{
AZ_Error(s_featureProcessorName, false, "Failed to find passes for \"MorphTargetPassTemplate\". Check your game project's .pass assets.");
}
}
SkinnedMeshRenderProxyInterfaceHandle SkinnedMeshFeatureProcessor::AcquireRenderProxyInterface(const SkinnedMeshRenderProxyDesc& desc)
{
return AcquireRenderProxy(desc);
}
bool SkinnedMeshFeatureProcessor::ReleaseRenderProxyInterface(SkinnedMeshRenderProxyInterfaceHandle& interfaceHandle)
{
SkinnedMeshRenderProxyHandle handle(AZStd::move(interfaceHandle));
return ReleaseRenderProxy(handle);
}
RPI::Ptr<SkinnedMeshComputePass> SkinnedMeshFeatureProcessor::GetSkinningPass() const
{
return m_skinningPass;
}
RPI::Ptr<MorphTargetComputePass> SkinnedMeshFeatureProcessor::GetMorphTargetPass() const
{
return m_morphTargetPass;
}
} // namespace Render
} // namespace AZ