You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/TextureAtlas/Code/Source/Editor/AtlasBuilderWorker.cpp

1581 lines
67 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project.
* For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#include "AtlasBuilderWorker.h"
#include <AzCore/Math/MathIntrinsics.h>
#include <AzCore/std/string/conversions.h>
#include <AzCore/Serialization/Utils.h>
#include <AzCore/Serialization/SerializeContext.h>
#include <AzCore/std/sort.h>
#include <AzCore/IO/FileIO.h>
#include <AzCore/IO/SystemFile.h>
#include <AzCore/std/string/regex.h>
#include <AzFramework/StringFunc/StringFunc.h>
#include <AzFramework/API/ApplicationAPI.h>
#include <AzFramework/IO/LocalFileIO.h>
#include <AzToolsFramework/API/EditorAssetSystemAPI.h>
#include <Atom/ImageProcessing/ImageObject.h>
#include <Atom/ImageProcessing/ImageProcessingBus.h>
#include <Atom/ImageProcessing/PixelFormats.h>
#include <Atom/RPI.Reflect/Image/StreamingImageAsset.h>
#include <qimage.h>
#include <QString>
#include <QDir>
#include <qfileinfo.h>
namespace TextureAtlasBuilder
{
//! Used for sorting ImageDimensions
bool operator<(ImageDimension a, ImageDimension b);
//! Used to expose the ImageDimension in a pair to AZStd::Sort
bool operator<(IndexImageDimension a, IndexImageDimension b);
//! Returns true if two coordinate sets overlap
bool Collides(AtlasCoordinates a, AtlasCoordinates b);
//! Returns true if item collides with any object in list
bool Collides(AtlasCoordinates item, AZStd::vector<AtlasCoordinates> list);
//! Returns the portion of the second item that overlaps with the first
AtlasCoordinates GetOverlap(AtlasCoordinates a, AtlasCoordinates b);
//! Performs an operation that copies a pixel to the output
void SetPixels(AZ::u8* dest, const AZ::u8* source, int destBytes);
//! Checks if we can insert an image into a slot
bool CanInsert(AtlasCoordinates slot, ImageDimension image, int padding, int farRight, int farBot);
//! Adds the necessary padding to an Atlas Coordinate
void AddPadding(AtlasCoordinates& slot, int padding, int farRight, int farBot);
//! Counts leading zeros
uint32_t CountLeadingZeros32(uint32_t x)
{
return x == 0 ? 32 : az_clz_u32(x);
}
//! Integer log2
uint32_t IntegerLog2(uint32_t x)
{
return 31 - CountLeadingZeros32(x);
}
bool IsFolderPath(const AZStd::string& path)
{
bool hasExtension = AzFramework::StringFunc::Path::HasExtension(path.c_str());
return !hasExtension;
}
bool HasTrailingSlash(const AZStd::string& path)
{
size_t pathLength = path.size();
return (pathLength > 0 && (path.at(pathLength - 1) == '/' || path.at(pathLength - 1) == '\\'));
}
bool GetCanonicalPathFromFullPath(const AZStd::string& fullPath, AZStd::string& canonicalPathOut)
{
AZStd::string curPath = fullPath;
// We avoid using LocalFileIO::ConvertToAbsolutePath for this because it does not behave consistently across platforms.
// On non-Windows platforms, LocalFileIO::ConvertToAbsolutePath requires that the path exist, otherwise the path
// remains unchanged. This won't work for paths that include wildcards.
// Also, on non-Windows platforms, if the path is already a full path, it will remain unchanged even if it contains
// "./" or "../" somewhere other than the beginning of the path
// Normalize path
AzFramework::ApplicationRequests::Bus::Broadcast(&AzFramework::ApplicationRequests::NormalizePathKeepCase, curPath);
const AZStd::string slash("/");
// Replace "/./" occurrances with "/"
const AZStd::string slashDotSlash("/./");
bool replaced = false;
do
{
// Replace first occurrance
replaced = AzFramework::StringFunc::Replace(curPath, slashDotSlash.c_str(), slash.c_str(), false, true, false);
} while (replaced);
// Replace "/xxx/../" with "/"
const AZStd::regex slashDotDotSlash("\\/[^/.]*\\/\\.\\.\\/");
AZStd::string prevPath;
while (prevPath != curPath)
{
prevPath = curPath;
curPath = AZStd::regex_replace(prevPath, slashDotDotSlash, slash, AZStd::regex_constants::match_flag_type::format_first_only);
}
if ((curPath.find("..") != AZStd::string::npos) || (curPath.find("./") != AZStd::string::npos) || (curPath.find("/.") != AZStd::string::npos))
{
return false;
}
canonicalPathOut = curPath;
return true;
}
bool ResolveRelativePath(const AZStd::string& relativePath, const AZStd::string& watchDirectory, AZStd::string& resolvedFullPathOut)
{
bool resolved = false;
if (relativePath[0] == '@')
{
// Get full path by resolving the alias at the front of the path
char resolvedPath[AZ_MAX_PATH_LEN];
AZ::IO::FileIOBase::GetInstance()->ResolvePath(relativePath.c_str(), resolvedPath, AZ_MAX_PATH_LEN);
resolvedFullPathOut = resolvedPath;
resolved = true;
}
else
{
// Get full path by appending the relative path to the watch directory
AZStd::string fullPath = watchDirectory;
fullPath.append("/");
fullPath.append(relativePath);
// Resolve to canonical path (remove "./" and "../")
resolved = GetCanonicalPathFromFullPath(fullPath, resolvedFullPathOut);
}
return resolved;
}
bool GetAbsoluteSourcePathFromRelativePath(const AZStd::string& relativeSourcePath, AZStd::string& absoluteSourcePathOut)
{
bool result = false;
AZ::Data::AssetInfo info;
AZStd::string watchFolder;
AzToolsFramework::AssetSystemRequestBus::BroadcastResult(result, &AzToolsFramework::AssetSystemRequestBus::Events::GetSourceInfoBySourcePath, relativeSourcePath.c_str(), info, watchFolder);
if (result)
{
absoluteSourcePathOut = AZStd::string::format("%s/%s", watchFolder.c_str(), info.m_relativePath.c_str());
// Normalize path
AzFramework::ApplicationRequests::Bus::Broadcast(&AzFramework::ApplicationRequests::NormalizePathKeepCase, absoluteSourcePathOut);
}
return result;
}
// Reflect the input parameters
void AtlasBuilderInput::Reflect(AZ::ReflectContext* context)
{
if (AZ::SerializeContext* serialize = azrtti_cast<AZ::SerializeContext*>(context))
{
serialize->Class<AtlasBuilderInput>()
->Version(1)
->Field("Force Square", &AtlasBuilderInput::m_forceSquare)
->Field("Force Power of Two", &AtlasBuilderInput::m_forcePowerOf2)
->Field("Include White Texture", &AtlasBuilderInput::m_includeWhiteTexture)
->Field("Maximum Dimension", &AtlasBuilderInput::m_maxDimension)
->Field("Padding", &AtlasBuilderInput::m_padding)
->Field("UnusedColor", &AtlasBuilderInput::m_unusedColor)
->Field("PresetName", &AtlasBuilderInput::m_presetName)
->Field("Textures to Add", &AtlasBuilderInput::m_filePaths);
}
}
// Supports a custom parser format
AtlasBuilderInput AtlasBuilderInput::ReadFromFile(const AZStd::string& path, const AZStd::string& directory, bool& valid)
{
// Open the file
AZ::IO::FileIOBase* input = AZ::IO::FileIOBase::GetInstance();
AZ::IO::HandleType handle;
input->Open(path.c_str(), AZ::IO::OpenMode::ModeRead, handle);
// Read the file
AZ::u64 size;
input->Size(handle, size);
char* buffer = new char[size + 1];
input->Read(handle, buffer, size);
buffer[size] = 0;
// Close the file
input->Close(handle);
// Prepare the output
AtlasBuilderInput data;
// Parse the input into lines
AZStd::vector<AZStd::string> lines;
AzFramework::StringFunc::Tokenize(buffer, lines, "\n\t");
delete[] buffer;
// Parse the individual lines
for (auto line : lines)
{
line = AzFramework::StringFunc::TrimWhiteSpace(line, true, true);
// Check for comments and empty lines
if ((line.length() >= 2 && line[0] == '/' && line[1] == '/') || line.length() < 1)
{
continue;
}
else if (line.find('=') != -1)
{
AZStd::vector<AZStd::string> args;
AzFramework::StringFunc::Tokenize(line.c_str(), args, '=', true, true);
if (args.size() > 2)
{
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to parse line: Excessive '=' symbols were found: \"%s\"", line.c_str()).c_str());
valid = false;
}
// Trim whitespace
args[0] = AzFramework::StringFunc::TrimWhiteSpace(args[0], true, true);
args[1] = AzFramework::StringFunc::TrimWhiteSpace(args[1], true, true);
// No case sensitivity for property names
AZStd::to_lower(args[0].begin(), args[0].end());
// Keep track of if the value is rejected
bool accepted = false;
if (args[0] == "square")
{
accepted = AzFramework::StringFunc::LooksLikeBool(args[1].c_str());
if (accepted)
{
data.m_forceSquare = AzFramework::StringFunc::ToBool(args[1].c_str());
}
}
else if (args[0] == "poweroftwo")
{
accepted = AzFramework::StringFunc::LooksLikeBool(args[1].c_str());
if (accepted)
{
data.m_forcePowerOf2 = AzFramework::StringFunc::ToBool(args[1].c_str());
}
}
else if (args[0] == "whitetexture")
{
accepted = AzFramework::StringFunc::LooksLikeBool(args[1].c_str());
if (accepted)
{
data.m_includeWhiteTexture = AzFramework::StringFunc::ToBool(args[1].c_str());
}
}
else if (args[0] == "maxdimension")
{
accepted = AzFramework::StringFunc::LooksLikeInt(args[1].c_str());
if (accepted)
{
data.m_maxDimension = AzFramework::StringFunc::ToInt(args[1].c_str());
}
}
else if (args[0] == "padding")
{
accepted = AzFramework::StringFunc::LooksLikeInt(args[1].c_str());
if (accepted)
{
data.m_padding = AzFramework::StringFunc::ToInt(args[1].c_str());
}
}
else if (args[0] == "unusedcolor")
{
accepted = args[1].at(0) == '#' && args[1].length() == 9;
if (accepted)
{
AZStd::string color = AZStd::string::format("%s%s%s%s", args[1].substr(7).c_str(), args[1].substr(5, 2).c_str(),
args[1].substr(3, 2).c_str(), args[1].substr(1, 2).c_str());
data.m_unusedColor.FromU32(AZStd::stoul(color, nullptr, 16));
}
}
else if (args[0] == "presetname")
{
accepted = true;
data.m_presetName = args[1];
}
else
{
// Supress accepted error because this error superceeds it
accepted = true;
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to parse line: Unrecognized property: \"%s\"", args[0].c_str()).c_str());
}
// If the property is recognized but the value is rejected, fail the job
if (!accepted)
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to parse line: Invalid value assigned to property: Property: \"%s\" Value: \"%s\"", args[0].c_str(), args[1].c_str()).c_str());
}
}
else if ((line[0] == '-'))
{
// Remove image files
AZStd::string remove = line.substr(1);
remove = AzFramework::StringFunc::TrimWhiteSpace(remove, true, true);
if (remove.find('*') != -1)
{
AZStd::string resolvedAbsolutePath;
bool resolved = ResolveRelativePath(remove, directory, resolvedAbsolutePath);
if (resolved)
{
RemoveFilesUsingWildCard(data.m_filePaths, resolvedAbsolutePath);
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to resolve relative path: %s", remove.c_str()).c_str());
}
}
else if (IsFolderPath(remove))
{
AZStd::string resolvedAbsolutePath;
bool resolved = ResolveRelativePath(remove, directory, resolvedAbsolutePath);
if (resolved)
{
RemoveFolderContents(data.m_filePaths, resolvedAbsolutePath);
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to resolve relative path: %s", remove.c_str()).c_str());
}
}
else
{
// Get the full path to the source image from the relative source path
AZStd::string fullSourceAssetPathName;
bool fullPathFound = GetAbsoluteSourcePathFromRelativePath(remove, fullSourceAssetPathName);
if (!fullPathFound)
{
// Try to resolve relative path as it might be using "./" or "../"
fullPathFound = ResolveRelativePath(remove, directory, fullSourceAssetPathName);
}
if (fullPathFound)
{
for (size_t i = 0; i < data.m_filePaths.size(); ++i)
{
if (data.m_filePaths[i] == fullSourceAssetPathName)
{
data.m_filePaths.erase(data.m_filePaths.begin() + i);
}
}
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to get source asset path for image: %s", remove.c_str()).c_str());
}
}
}
else
{
// Add image files
AzFramework::ApplicationRequests::Bus::Broadcast(&AzFramework::ApplicationRequests::NormalizePathKeepCase, line);
bool duplicate = false;
if (line.find('*') != -1)
{
AZStd::string resolvedAbsolutePath;
bool resolved = ResolveRelativePath(line, directory, resolvedAbsolutePath);
if (resolved)
{
AddFilesUsingWildCard(data.m_filePaths, resolvedAbsolutePath);
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to resolve relative path: %s", line.c_str()).c_str());
}
}
else if (IsFolderPath(line))
{
AZStd::string resolvedAbsolutePath;
bool resolved = ResolveRelativePath(line, directory, resolvedAbsolutePath);
if (resolved)
{
AddFolderContents(data.m_filePaths, resolvedAbsolutePath, valid);
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to resolve relative path: %s", line.c_str()).c_str());
}
}
else
{
// Get the full path to the source image from the relative source path
AZStd::string fullSourceAssetPathName;
bool fullPathFound = GetAbsoluteSourcePathFromRelativePath(line, fullSourceAssetPathName);
if (!fullPathFound)
{
// Try to resolve relative path as it might be using "./" or "../"
fullPathFound = ResolveRelativePath(line, directory, fullSourceAssetPathName);
}
if (fullPathFound)
{
// Prevent duplicates
for (size_t i = 0; i < data.m_filePaths.size() && !duplicate; ++i)
{
duplicate = data.m_filePaths[i] == fullSourceAssetPathName;
}
if (!duplicate)
{
data.m_filePaths.push_back(fullSourceAssetPathName);
}
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to get source asset path for image: %s", line.c_str()).c_str());
}
}
}
}
return data;
}
void AtlasBuilderInput::AddFilesUsingWildCard(AZStd::vector<AZStd::string>& paths, const AZStd::string& insert)
{
const AZStd::string& fullPath = insert;
AZStd::vector<AZStd::string> candidates;
AZStd::string fixedPath = fullPath.substr(0, fullPath.find('*'));
fixedPath = fixedPath.substr(0, fixedPath.find_last_of('/'));
candidates.push_back(fixedPath);
AZStd::vector<AZStd::string> wildPath;
AzFramework::StringFunc::Tokenize(fullPath.substr(fixedPath.length()).c_str(), wildPath, "/");
for (size_t i = 0; i < wildPath.size() && candidates.size() > 0; ++i)
{
AZStd::vector<AZStd::string> nextCandidates;
for (size_t j = 0; j < candidates.size(); ++j)
{
AZStd::string compare = AZStd::string::format("%s/%s", candidates[j].c_str(), wildPath[i].c_str());
QDir inputFolder(candidates[j].c_str());
if (inputFolder.exists())
{
QFileInfoList entries = inputFolder.entryInfoList(QDir::Dirs | QDir::NoDotAndDotDot | QDir::Files);
for (const QFileInfo& entry : entries)
{
AZStd::string child = (entry.filePath().toStdString()).c_str();
AzFramework::ApplicationRequests::Bus::Broadcast(&AzFramework::ApplicationRequests::NormalizePathKeepCase, child);
if (DoesPathnameMatchWildCard(compare, child))
{
nextCandidates.push_back(child);
}
}
}
}
candidates = nextCandidates;
}
for (size_t i = 0; i < candidates.size(); ++i)
{
if (!IsFolderPath(candidates[i]) && !HasTrailingSlash(fullPath))
{
AZStd::string ext;
AzFramework::StringFunc::Path::GetExtension(candidates[i].c_str(), ext, false);
if (ext != "dds")
{
bool duplicate = false;
for (size_t j = 0; j < paths.size() && !duplicate; ++j)
{
duplicate = paths[j] == candidates[i];
}
if (!duplicate)
{
paths.push_back(candidates[i]);
}
}
}
else if (IsFolderPath(candidates[i]) && HasTrailingSlash(fullPath))
{
bool waste = true;
AddFolderContents(paths, candidates[i], waste);
}
}
}
void AtlasBuilderInput::RemoveFilesUsingWildCard(AZStd::vector<AZStd::string>& paths, const AZStd::string& remove)
{
bool isDir = (remove.at(remove.length() - 1) == '/');
for (size_t i = 0; i < paths.size(); ++i)
{
if (isDir ? DoesWildCardDirectoryIncludePathname(remove, paths[i]) : DoesPathnameMatchWildCard(remove, paths[i]))
{
paths.erase(paths.begin() + i);
--i;
}
}
}
// Tells us if the child follows the rule
bool AtlasBuilderInput::DoesPathnameMatchWildCard(const AZStd::string& rule, const AZStd::string& child)
{
AZStd::vector<AZStd::string> rulePathTokens;
AzFramework::StringFunc::Tokenize(rule.c_str(), rulePathTokens, "/");
AZStd::vector<AZStd::string> pathTokens;
AzFramework::StringFunc::Tokenize(child.c_str(), pathTokens, "/");
if (rulePathTokens.size() != pathTokens.size())
{
return false;
}
for (size_t i = 0; i < rulePathTokens.size(); ++i)
{
if (!TokenMatchesWildcard(rulePathTokens[i], pathTokens[i]))
{
return false;
}
}
return true;
}
bool AtlasBuilderInput::DoesWildCardDirectoryIncludePathname(const AZStd::string& rule, const AZStd::string& child)
{
AZStd::vector<AZStd::string> rulePathTokens;
AzFramework::StringFunc::Tokenize(rule.c_str(), rulePathTokens, "/");
AZStd::vector<AZStd::string> pathTokens;
AzFramework::StringFunc::Tokenize(child.c_str(), pathTokens, "/");
if (rulePathTokens.size() >= pathTokens.size())
{
return false;
}
for (size_t i = 0; i < rulePathTokens.size(); ++i)
{
if (!TokenMatchesWildcard(rulePathTokens[i], pathTokens[i]))
{
return false;
}
}
return true;
}
bool AtlasBuilderInput::TokenMatchesWildcard(const AZStd::string& rule, const AZStd::string& child)
{
AZStd::vector<AZStd::string> ruleTokens;
AzFramework::StringFunc::Tokenize(rule.c_str(), ruleTokens, "*");
size_t pos = 0;
int token = 0;
if (rule.at(0) != '*' && child.find(ruleTokens[0]) != 0)
{
return false;
}
while (pos != AZStd::string::npos && token < ruleTokens.size())
{
pos = child.find(ruleTokens[token], pos);
if (pos != AZStd::string::npos)
{
pos += ruleTokens[token].size();
}
++token;
}
return pos == child.size() || (pos != AZStd::string::npos && rule.at(rule.length() - 1) == '*');
}
// Replaces all folder paths with the files they contain
void AtlasBuilderInput::AddFolderContents(AZStd::vector<AZStd::string>& paths, const AZStd::string& insert, bool& valid)
{
QDir inputFolder(insert.c_str());
if (inputFolder.exists())
{
QFileInfoList entries = inputFolder.entryInfoList(QDir::Dirs | QDir::NoDotAndDotDot | QDir::Files);
for (const QFileInfo& entry : entries)
{
AZStd::string child = (entry.filePath().toStdString()).c_str();
AZStd::string ext;
bool isDir = !AzFramework::StringFunc::Path::GetExtension(child.c_str(), ext, false);
if (isDir)
{
AddFolderContents(paths, child, valid);
}
else if (ext != "dds")
{
AzFramework::ApplicationRequests::Bus::Broadcast(&AzFramework::ApplicationRequests::NormalizePathKeepCase, child);
bool duplicate = false;
for (size_t i = 0; i < paths.size() && !duplicate; ++i)
{
duplicate = paths[i] == child;
}
if (!duplicate)
{
paths.push_back(child);
}
}
}
}
else
{
valid = false;
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to find requested directory: %s", insert.c_str()).c_str());
}
}
// Removes all of the contents of a folder
void AtlasBuilderInput::RemoveFolderContents(AZStd::vector<AZStd::string>& paths, const AZStd::string& remove)
{
AZStd::string folder = remove;
AzFramework::StringFunc::Strip(folder, "/", false, false, true);
folder.append("/");
for (size_t i = 0; i < paths.size(); ++i)
{
if (paths[i].find(folder) == 0)
{
paths.erase(paths.begin() + i);
--i;
}
}
}
// Note - Shutdown will be called on a different thread than your process job thread
void AtlasBuilderWorker::ShutDown() { m_isShuttingDown = true; }
void AtlasBuilderWorker::CreateJobs(const AssetBuilderSDK::CreateJobsRequest& request,
AssetBuilderSDK::CreateJobsResponse& response)
{
// Read in settings/filepaths to set dependencies
AZStd::string fullPath;
AzFramework::StringFunc::Path::Join(
request.m_watchFolder.c_str(), request.m_sourceFile.c_str(), fullPath, true, true);
// Check if input is valid
bool valid = true;
AtlasBuilderInput input = AtlasBuilderInput::ReadFromFile(fullPath, request.m_watchFolder, valid);
// Set dependencies
for (int i = 0; i < input.m_filePaths.size(); ++i)
{
AssetBuilderSDK::SourceFileDependency dependency;
dependency.m_sourceFileDependencyPath = input.m_filePaths[i].c_str();
response.m_sourceFileDependencyList.push_back(dependency);
}
// We process the same file for all platforms
for (const AssetBuilderSDK::PlatformInfo& info : request.m_enabledPlatforms)
{
bool doesSupportPlatform = false;
ImageProcessingAtom::ImageBuilderRequestBus::BroadcastResult(doesSupportPlatform,
&ImageProcessingAtom::ImageBuilderRequests::DoesSupportPlatform,
info.m_identifier);
if (doesSupportPlatform)
{
AssetBuilderSDK::JobDescriptor descriptor = GetJobDescriptor(request.m_sourceFile, input);
descriptor.SetPlatformIdentifier(info.m_identifier.c_str());
response.m_createJobOutputs.push_back(descriptor);
}
}
if (valid)
{
response.m_result = AssetBuilderSDK::CreateJobsResultCode::Success;
}
return;
}
AssetBuilderSDK::JobDescriptor AtlasBuilderWorker::GetJobDescriptor(const AZStd::string& sourceFile, const AtlasBuilderInput& input)
{
// Get the extension of the file
AZStd::string ext;
AzFramework::StringFunc::Path::GetExtension(sourceFile.c_str(), ext, false);
AZStd::to_upper(ext.begin(), ext.end());
AssetBuilderSDK::JobDescriptor descriptor;
descriptor.m_jobKey = ext + " Atlas";
descriptor.m_critical = false;
descriptor.m_jobParameters[AZ_CRC("forceSquare")] = input.m_forceSquare ? "true" : "false";
descriptor.m_jobParameters[AZ_CRC("forcePowerOf2")] = input.m_forcePowerOf2 ? "true" : "false";
descriptor.m_jobParameters[AZ_CRC("includeWhiteTexture")] = input.m_includeWhiteTexture ? "true" : "false";
descriptor.m_jobParameters[AZ_CRC("padding")] = AZStd::to_string(input.m_padding);
descriptor.m_jobParameters[AZ_CRC("maxDimension")] = AZStd::to_string(input.m_maxDimension);
descriptor.m_jobParameters[AZ_CRC("filePaths")] = AZStd::to_string(input.m_filePaths.size());
AZ::u32 col = input.m_unusedColor.ToU32();
descriptor.m_jobParameters[AZ_CRC("unusedColor")] = AZStd::to_string(*reinterpret_cast<int*>(&col));
descriptor.m_jobParameters[AZ_CRC("presetName")] = input.m_presetName;
// The starting point for the list
const int start = static_cast<int>(descriptor.m_jobParameters.size()) + 1;
descriptor.m_jobParameters[AZ_CRC("startPoint")] = AZStd::to_string(start);
for (int i = 0; i < input.m_filePaths.size(); ++i)
{
descriptor.m_jobParameters[start + i] = input.m_filePaths[i];
}
return descriptor;
}
void AtlasBuilderWorker::ProcessJob(const AssetBuilderSDK::ProcessJobRequest& request,
AssetBuilderSDK::ProcessJobResponse& response)
{
// Before we begin, let's make sure we are not meant to abort.
AssetBuilderSDK::JobCancelListener jobCancelListener(request.m_jobId);
const AZStd::string path = request.m_fullPath;
// read in settings/filepaths
AtlasBuilderInput input;
input.m_forceSquare = AzFramework::StringFunc::ToBool(request.m_jobDescription.m_jobParameters.find(AZ_CRC("forceSquare"))->second.c_str());
input.m_forcePowerOf2 = AzFramework::StringFunc::ToBool(request.m_jobDescription.m_jobParameters.find(AZ_CRC("forcePowerOf2"))->second.c_str());
input.m_includeWhiteTexture = AzFramework::StringFunc::ToBool(request.m_jobDescription.m_jobParameters.find(AZ_CRC("includeWhiteTexture"))->second.c_str());
input.m_padding = AzFramework::StringFunc::ToInt(request.m_jobDescription.m_jobParameters.find(AZ_CRC("padding"))->second.c_str());
input.m_maxDimension = AzFramework::StringFunc::ToInt(request.m_jobDescription.m_jobParameters.find(AZ_CRC("maxDimension"))->second.c_str());
int startAsInt = AzFramework::StringFunc::ToInt(request.m_jobDescription.m_jobParameters.find(AZ_CRC("startPoint"))->second.c_str());
int sizeAsInt = AzFramework::StringFunc::ToInt(request.m_jobDescription.m_jobParameters.find(AZ_CRC("filePaths"))->second.c_str());
AZ::u32 start = static_cast<AZ::u32>(AZStd::max(0, startAsInt));
AZ::u32 size = static_cast<AZ::u32>(AZStd::max(0, sizeAsInt));
int col = AzFramework::StringFunc::ToInt(request.m_jobDescription.m_jobParameters.find(AZ_CRC("unusedColor"))->second.c_str());
input.m_unusedColor.FromU32(*reinterpret_cast<AZ::u32*>(&col));
input.m_presetName = request.m_jobDescription.m_jobParameters.find(AZ_CRC("presetName"))->second;
for (AZ::u32 i = 0; i < size; ++i)
{
input.m_filePaths.push_back(request.m_jobDescription.m_jobParameters.find(start + i)->second);
}
if (input.m_filePaths.empty())
{
AZ_Error("AtlasBuilder", false, "No image files specified. Cannot create an empty atlas.");
return;
}
// Don't allow padding to be less than zero
if (input.m_padding < 0)
{
input.m_padding = 0;
}
if (input.m_presetName.empty())
{
// Default to the TextureAtlas preset which is currently set to use compression
const AZStd::string defaultPresetName = "UserInterface_Compressed";
input.m_presetName = defaultPresetName;
}
bool isFormatSquarePow2 = false;
ImageProcessingAtom::ImageBuilderRequestBus::BroadcastResult(isFormatSquarePow2,
&ImageProcessingAtom::ImageBuilderRequests::IsPresetFormatSquarePow2,
input.m_presetName, request.m_platformInfo.m_identifier);
if (isFormatSquarePow2)
{
// Override the user config settings to force square and power of 2.
// Otherwise the image conversion process will stretch the image to satisfy these requirements
input.m_forceSquare = true;
input.m_forcePowerOf2 = true;
}
// Read in images
AZStd::vector<ImageProcessingAtom::IImageObjectPtr> images;
AZ::u64 totalArea = 0;
int maxArea = input.m_maxDimension * input.m_maxDimension;
bool sizeFailure = false;
for (int i = 0; i < input.m_filePaths.size() && !jobCancelListener.IsCancelled(); ++i)
{
ImageProcessingAtom::IImageObjectPtr inputImage;
ImageProcessingAtom::ImageProcessingRequestBus::BroadcastResult(inputImage, &ImageProcessingAtom::ImageProcessingRequests::LoadImage, input.m_filePaths[i]);
// Check if we were able to load the image
if (inputImage)
{
images.push_back(inputImage);
totalArea += inputImage->GetWidth(0) * inputImage->GetHeight(0);
}
else
{
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to load file: %s", input.m_filePaths[i].c_str()).c_str());
return;
}
if (maxArea < totalArea)
{
sizeFailure = true;
}
}
// If we get cancelled, return
if (jobCancelListener.IsCancelled())
{
return;
}
if (sizeFailure)
{
AZ_Error("AtlasBuilder", false, AZStd::string::format("Total image area exceeds maximum alotted area. %llu > %d", totalArea, maxArea).c_str());
return;
}
// Convert all image paths to their output format referenced at runtime
for (auto& filePath : input.m_filePaths)
{
// Get path relative to the watch folder
bool result = false;
AZ::Data::AssetInfo info;
AZStd::string watchFolder;
AzToolsFramework::AssetSystemRequestBus::BroadcastResult(result, &AzToolsFramework::AssetSystemRequestBus::Events::GetSourceInfoBySourcePath, filePath.c_str(), info, watchFolder);
if (!result)
{
AZ_Error("AtlasBuilder", false, AZStd::string::format("Atlas Builder unable to get relative source path for image: %s", filePath.c_str()).c_str());
return;
}
// Remove extension
filePath = info.m_relativePath.substr(0, info.m_relativePath.find_last_of('.'));
// Normalize path
AzFramework::ApplicationRequests::Bus::Broadcast(&AzFramework::ApplicationRequests::NormalizePathKeepCase, filePath);
}
// Add white texture if we need to
if (input.m_includeWhiteTexture)
{
ImageProcessingAtom::IImageObjectPtr texture;
ImageProcessingAtom::ImageBuilderRequestBus::BroadcastResult(texture,
&ImageProcessingAtom::ImageBuilderRequests::CreateImage,
aznumeric_cast<AZ::u32>(cellSize),
aznumeric_cast<AZ::u32>(cellSize),
1,
ImageProcessingAtom::EPixelFormat::ePixelFormat_R8G8B8A8);
// Make the texture white
texture->ClearColor(1, 1, 1, 1);
images.push_back(texture);
input.m_filePaths.push_back("WhiteTexture");
}
// Generate algorithm inputs
ImageDimensionData data;
for (int i = 0; i < images.size(); ++i)
{
data.push_back(IndexImageDimension(i,
ImageDimension(images[i]->GetWidth(0),
images[i]->GetHeight(0))));
}
AZStd::sort(data.begin(), data.end());
// Run algorithm
// Variables that keep track of the optimal solution
int resultWidth = -1;
int resultHeight = -1;
// Check that the max dimension is not large enough for the area to loop past the maximum integer
// This is important because we do not want the area to be calculated negative
if (input.m_maxDimension > 65535)
{
input.m_maxDimension = 65535;
}
// Get the optimal mappings based on the input settings
AZStd::vector<AtlasCoordinates> paddedMap;
size_t amountFit = 0;
if (!TryTightening(
input, data, GetWidest(data), GetTallest(data), aznumeric_cast<int>(totalArea), input.m_padding, resultWidth, resultHeight, amountFit, paddedMap))
{
AZ_Error("AtlasBuilder", false, AZStd::string::format("Cannot fit images into given maximum atlas size (%dx%d). Only %zu out of %zu images fit.", input.m_maxDimension, input.m_maxDimension, amountFit, input.m_filePaths.size()).c_str());
// For some reason, failing the assert isn't enough to stop the Asset builder. It will still fail further
// down when it tries to assemble the atlas, but returning here is cleaner.
return;
}
// Move coordinates from algorithm space to padded result space
TextureAtlasNamespace::AtlasCoordinateSets output;
resultWidth = 0;
resultHeight = 0;
AZStd::vector<AtlasCoordinates> map;
for (int i = 0; i < paddedMap.size(); ++i)
{
map.push_back(AtlasCoordinates(paddedMap[i].GetLeft(), paddedMap[i].GetLeft() + images[data[i].first]->GetWidth(0), paddedMap[i].GetTop(), paddedMap[i].GetTop() + images[data[i].first]->GetHeight(0)));
resultHeight = resultHeight > map[i].GetBottom() ? resultHeight : map[i].GetBottom();
resultWidth = resultWidth > map[i].GetRight() ? resultWidth : map[i].GetRight();
const AZStd::string& outputFilePath = input.m_filePaths[data[i].first];
output.push_back(AZStd::pair<AZStd::string, AtlasCoordinates>(outputFilePath, map[i]));
}
if (input.m_forcePowerOf2)
{
resultWidth = aznumeric_cast<int>(pow(2, 1 + IntegerLog2(static_cast<uint32_t>(resultWidth - 1))));
resultHeight = aznumeric_cast<int>(pow(2, 1 + IntegerLog2(static_cast<uint32_t>(resultHeight - 1))));
}
else
{
resultWidth = (resultWidth + (cellSize - 1)) / cellSize * cellSize;
resultHeight = (resultHeight + (cellSize - 1)) / cellSize * cellSize;
}
if (input.m_forceSquare)
{
if (resultWidth > resultHeight)
{
resultHeight = resultWidth;
}
else
{
resultWidth = resultHeight;
}
}
// Process texture sheet
ImageProcessingAtom::IImageObjectPtr outImage;
ImageProcessingAtom::ImageBuilderRequestBus::BroadcastResult(outImage,
&ImageProcessingAtom::ImageBuilderRequests::CreateImage,
aznumeric_cast<AZ::u32>(resultWidth),
aznumeric_cast<AZ::u32>(resultHeight),
1,
ImageProcessingAtom::EPixelFormat::ePixelFormat_R8G8B8A8);
// Clear the sheet
outImage->ClearColor(input.m_unusedColor.GetR(), input.m_unusedColor.GetG(), input.m_unusedColor.GetB(), input.m_unusedColor.GetA());
AZ::u8* outBuffer = nullptr;
AZ::u32 outPitch;
outImage->GetImagePointer(0, outBuffer, outPitch);
// Copy images over
for (int i = 0; i < map.size() && !jobCancelListener.IsCancelled(); ++i)
{
AZ::u8* inBuffer = nullptr;
AZ::u32 inPitch;
images[data[i].first]->GetImagePointer(0, inBuffer, inPitch);
int j = 0;
// The padding calculated here is the amount of excess horizontal space measured in bytes that are in each
// row of the destination space AFTER the placement of the source row.
int rightPadding = (paddedMap[i].GetRight() - map[i].GetRight() - input.m_padding);
if (map[i].GetRight() + rightPadding > resultWidth)
{
rightPadding = resultWidth - map[i].GetRight();
}
rightPadding *= bytesPerPixel;
int bottomPadding = (paddedMap[i].GetBottom() - map[i].GetBottom() - input.m_padding);
if (map[i].GetBottom() + bottomPadding > resultHeight)
{
bottomPadding = resultHeight - map[i].GetBottom();
}
int leftPadding = 0;
if (map[i].GetLeft() - input.m_padding >= 0)
{
leftPadding = input.m_padding * bytesPerPixel;
}
int topPadding = 0;
if (map[i].GetTop() - input.m_padding >= 0)
{
topPadding = input.m_padding;
}
for (j = 0; j < map[i].GetHeight(); ++j)
{
// When we multiply `map[i].GetLeft()` by 4, we are changing the measure from atlas space, to byte array
// space. The number is 4 because in this format, each pixel is 4 bytes long.
memcpy(outBuffer + (map[i].GetTop() + j) * outPitch + (map[i].GetLeft() * bytesPerPixel),
inBuffer + inPitch * j,
inPitch);
// Fill in the last bit of the row in the destination space with the same colors
SetPixels(outBuffer + (map[i].GetTop() + j) * outPitch + (map[i].GetLeft() * bytesPerPixel) + inPitch,
outBuffer + (map[i].GetTop() + j) * outPitch + (map[i].GetLeft() * bytesPerPixel) + inPitch - bytesPerPixel,
rightPadding);
// Fill in the first bit of the row in the destination space with the same colors
SetPixels(outBuffer + (map[i].GetTop() + j) * outPitch + (map[i].GetLeft() * bytesPerPixel) - leftPadding,
outBuffer + (map[i].GetTop() + j) * outPitch + (map[i].GetLeft() * bytesPerPixel),
leftPadding);
}
// Fill in the last few rows of the buffer with the same colors
for (; j < map[i].GetHeight() + bottomPadding; ++j)
{
memcpy(outBuffer + (map[i].GetTop() + j) * outPitch + (map[i].GetLeft() * bytesPerPixel) - leftPadding,
outBuffer + (map[i].GetBottom() - 1) * outPitch + (map[i].GetLeft() * bytesPerPixel) - leftPadding,
inPitch + leftPadding + rightPadding);
}
for (j = 1; j <= topPadding; ++j)
{
memcpy(outBuffer + (map[i].GetTop() - j) * outPitch + (map[i].GetLeft() * bytesPerPixel) - leftPadding,
outBuffer + map[i].GetTop() * outPitch + (map[i].GetLeft() * bytesPerPixel) - leftPadding,
inPitch + rightPadding + leftPadding);
}
}
// If we get cancelled, return
if (jobCancelListener.IsCancelled())
{
return;
}
// Output Atlas Coordinates
AZStd::string fileName;
AZStd::string outputPath;
AzFramework::StringFunc::Path::GetFullFileName(request.m_sourceFile.c_str(), fileName);
fileName = fileName.append("idx");
AzFramework::StringFunc::Path::Join(
request.m_tempDirPath.c_str(), fileName.c_str(), outputPath, true, true);
// Output texture sheet
AZStd::string imageFileName, imageOutputPath;
AzFramework::StringFunc::Path::GetFileName(request.m_sourceFile.c_str(), imageFileName);
imageFileName += ".texatlas";
AzFramework::StringFunc::Path::Join(
request.m_tempDirPath.c_str(), imageFileName.c_str(), imageOutputPath, true, true);
AZStd::vector<AssetBuilderSDK::JobProduct> outProducts;
ImageProcessingAtom::ImageBuilderRequestBus::BroadcastResult(outProducts,
&ImageProcessingAtom::ImageBuilderRequests::ConvertImageObject,
outImage,
input.m_presetName,
request.m_platformInfo.m_identifier,
imageOutputPath,
request.m_sourceFileUUID,
request.m_sourceFile);
if (!outProducts.empty())
{
TextureAtlasNamespace::TextureAtlasRequestBus::Broadcast(
&TextureAtlasNamespace::TextureAtlasRequests::SaveAtlasToFile, outputPath, output, resultWidth, resultHeight);
response.m_outputProducts.push_back(AssetBuilderSDK::JobProduct(outputPath));
response.m_outputProducts[static_cast<int>(Product::TexatlasidxProduct)].m_productAssetType = azrtti_typeid<TextureAtlasNamespace::TextureAtlasAsset>();
response.m_outputProducts[static_cast<int>(Product::TexatlasidxProduct)].m_productSubID = 0;
// The Image Processing Gem can produce multiple output files under certain
// circumstances, but the texture atlas is not expected to produce such output
if (outProducts.size() > 1)
{
AZ_Error("AtlasBuilder", false, "Image processing resulted in multiple output files. Texture atlas is expected to produce one output.");
response.m_outputProducts.clear();
return;
}
response.m_outputProducts.push_back(outProducts[0]);
// The texatlasidx file is a data file that indicates where the original parts are inside the atlas,
// and this would usually imply that it refers to its dds file in some way or needs it to function.
// The texatlasidx file should be the one that depends on the DDS because it's possible to use the DDS
// without the texatlasid, but not the other way around
AZ::Data::AssetId productAssetId(request.m_sourceFileUUID, response.m_outputProducts.back().m_productSubID);
response.m_outputProducts[static_cast<int>(Product::TexatlasidxProduct)].m_dependencies.push_back(AssetBuilderSDK::ProductDependency(productAssetId, 0));
response.m_outputProducts[static_cast<int>(Product::TexatlasidxProduct)].m_dependenciesHandled = true; // We've populated the dependencies immediately above so it's OK to tell the AP we've handled dependencies
response.m_resultCode = AssetBuilderSDK::ProcessJobResult_Success;
}
}
bool AtlasBuilderWorker::TryPack(const ImageDimensionData& images,
int targetWidth,
int targetHeight,
int padding,
size_t& amountFit,
AZStd::vector<AtlasCoordinates>& out)
{
// Start with one open slot and initialize a vector to store the closed products
AZStd::vector<AtlasCoordinates> open;
AZStd::vector<AtlasCoordinates> closed;
open.push_back(AtlasCoordinates(0, targetWidth, 0, targetHeight));
bool slotNotFound = false;
for (size_t i = 0; i < images.size() && !slotNotFound; ++i)
{
slotNotFound = true;
// Try to place the image in every open slot
for (size_t j = 0; j < open.size(); ++j)
{
if (CanInsert(open[j], images[i].second, padding, targetWidth, targetHeight))
{
// if it fits, subdivide the excess space in the slot, add it back to the open list and place the
// filled space into the closed vector
slotNotFound = false;
AtlasCoordinates spent(open[j].GetLeft(),
open[j].GetLeft() + images[i].second.m_width,
open[j].GetTop(),
open[j].GetTop() + images[i].second.m_height);
// We are going to try pushing the object up / left to try to avoid creating tight open spaces.
bool needTrim = false;
AtlasCoordinates coords = spent;
// Modifying left will preserve width
coords.SetLeft(coords.GetLeft() - 1);
AddPadding(coords, padding, targetWidth, targetHeight);
while (spent.GetLeft() > 0 && !Collides(coords, closed))
{
spent.SetLeft(coords.GetLeft());
coords = spent;
coords.SetLeft(coords.GetLeft() - 1);
AddPadding(coords, padding, targetWidth, targetHeight);
needTrim = true;
}
// Refocus the search to see if we can push up
coords = spent;
coords.SetTop(coords.GetTop() - 1);
AddPadding(coords, padding, targetWidth, targetHeight);
while (spent.GetTop() > 0 && !Collides(coords, closed))
{
spent.SetTop(coords.GetTop());
coords = spent;
coords.SetTop(coords.GetTop() - 1);
AddPadding(coords, padding, targetWidth, targetHeight);
needTrim = true;
}
AddPadding(spent, padding, targetWidth, targetHeight);
if (needTrim)
{
TrimOverlap(open, spent);
closed.push_back(spent);
break;
}
AtlasCoordinates bigCoords;
AtlasCoordinates smallCoords;
// Create the largest possible subdivision and another subdivision that uses the left over space
if (open[j].GetBottom() - spent.GetBottom() < open[j].GetRight() - spent.GetRight())
{
smallCoords = AtlasCoordinates(
open[j].GetLeft(), spent.GetRight(), spent.GetBottom(), open[j].GetBottom());
bigCoords = AtlasCoordinates(spent.GetRight(), open[j].GetRight(), open[j].GetTop(), smallCoords.GetBottom());
}
else
{
bigCoords = AtlasCoordinates(
open[j].GetLeft(), open[j].GetRight(), spent.GetBottom(), open[j].GetBottom());
smallCoords = AtlasCoordinates(spent.GetRight(), open[j].GetRight(), open[j].GetTop(), bigCoords.GetTop());
}
open.erase(open.begin() + j, open.begin() + j + 1);
if (bigCoords.GetHeight() > 0 && bigCoords.GetHeight() > 0)
{
InsertInOrder(open, bigCoords);
}
if (smallCoords.GetHeight() > 0 && smallCoords.GetHeight() > 0)
{
InsertInOrder(open, smallCoords);
}
closed.push_back(spent);
break;
}
}
if (slotNotFound)
{
// If no single open slot can fit the object, do one last check to see if we can fit it in at any open
// corner. The reason we perform this check is in case the object can be fit across multiple different
// open spaces. If there is a space that an object can be fit in, it will probably involve the top left
// corner of that object in the top left corner of an open slot. This may miss some odd fits, but due to
// the nature of the packing algorithm, such solutions are highly unlikely to exist. If we wanted to
// expand the algorithm, we could theoretically base it on edges instead of corners to find all results,
// but it would not be time efficient.
for (size_t j = 0; j < open.size(); ++j)
{
AtlasCoordinates insert = AtlasCoordinates(open[j].GetLeft(),
open[j].GetLeft() + images[i].second.m_width,
open[j].GetTop(),
open[j].GetTop() + images[i].second.m_height);
AddPadding(insert, padding, targetWidth, targetHeight);
if (insert.GetRight() <= targetWidth && insert.GetBottom() <= targetHeight)
{
bool collision = Collides(insert, closed);
if (!collision)
{
closed.push_back(insert);
// Trim overlapping open slots
TrimOverlap(open, insert);
slotNotFound = false;
break;
}
}
}
}
}
// If we succeeded, update the output
if (!slotNotFound)
{
out = closed;
}
amountFit = amountFit > closed.size() ? amountFit : closed.size();
return !slotNotFound;
}
// Modifies slotList so that no items in slotList overlap with item
void AtlasBuilderWorker::TrimOverlap(AZStd::vector<AtlasCoordinates>& slotList, AtlasCoordinates item)
{
for (size_t i = 0; i < slotList.size(); ++i)
{
if (Collides(slotList[i], item))
{
// Subdivide the overlapping slot to seperate overlapping and non overlapping portions
AtlasCoordinates overlap = GetOverlap(item, slotList[i]);
AZStd::vector<AtlasCoordinates> excess;
excess.push_back(AtlasCoordinates(
slotList[i].GetLeft(), overlap.GetRight(), slotList[i].GetTop(), overlap.GetTop()));
excess.push_back(AtlasCoordinates(
slotList[i].GetLeft(), overlap.GetLeft(), overlap.GetTop(), slotList[i].GetBottom()));
excess.push_back(AtlasCoordinates(
overlap.GetRight(), slotList[i].GetRight(), slotList[i].GetTop(), overlap.GetBottom()));
excess.push_back(AtlasCoordinates(
overlap.GetLeft(), slotList[i].GetRight(), overlap.GetBottom(), slotList[i].GetBottom()));
slotList.erase(slotList.begin() + i);
for (size_t j = 0; j < excess.size(); ++j)
{
if (excess[j].GetWidth() > 0 && excess[j].GetHeight() > 0)
{
InsertInOrder(slotList, excess[j]);
}
}
--i;
}
}
}
// This function interprets input and performs the proper tightening option
bool AtlasBuilderWorker::TryTightening(AtlasBuilderInput input,
const ImageDimensionData& images,
int smallestWidth,
int smallestHeight,
int targetArea,
int padding,
int& resultWidth,
int& resultHeight,
size_t& amountFit,
AZStd::vector<AtlasCoordinates>& out)
{
if (input.m_forceSquare)
{
return TryTighteningSquare(images,
smallestWidth > smallestHeight ? smallestWidth : smallestHeight,
input.m_maxDimension,
targetArea,
input.m_forcePowerOf2,
padding,
resultWidth,
resultHeight,
amountFit,
out);
}
else
{
return TryTighteningOptimal(images,
smallestWidth,
smallestHeight,
input.m_maxDimension,
targetArea,
input.m_forcePowerOf2,
padding,
resultWidth,
resultHeight,
amountFit,
out);
}
}
// Finds the optimal square solution by starting with the ideal solution and expanding the size of the space until everything fits
bool AtlasBuilderWorker::TryTighteningSquare(const ImageDimensionData& images,
int lowerBound,
int maxDimension,
int targetArea,
bool powerOfTwo,
int padding,
int& resultWidth,
int& resultHeight,
size_t& amountFit,
AZStd::vector<AtlasCoordinates>& out)
{
// Square solution cannot be smaller than the target area
int dimension = aznumeric_cast<int>(sqrt(static_cast<float>(targetArea)));
// Solution cannot be smaller than the smallest side
dimension = dimension > lowerBound ? dimension : lowerBound;
if (powerOfTwo)
{
// Starting dimension needs to be rounded up to the nearest power of two
dimension = aznumeric_cast<int>(pow(2, 1 + IntegerLog2(static_cast<uint32_t>(dimension - 1))));
}
AZStd::vector<AtlasCoordinates> track;
// Expand the square until the contents fit
while (!TryPack(images, dimension, dimension, padding, amountFit, track) && dimension <= maxDimension)
{
// Step to the next valid value
dimension = powerOfTwo ? dimension * 2 : dimension + cellSize;
}
// Make sure we found a solution
if (dimension > maxDimension)
{
return false;
}
resultHeight = dimension;
resultWidth = dimension;
out = track;
return true;
}
// Finds the optimal solution by starting with a somewhat optimal solution and searching for better solutions
bool AtlasBuilderWorker::TryTighteningOptimal(const ImageDimensionData& images,
int smallestWidth,
int smallestHeight,
int maxDimension,
int targetArea,
bool powerOfTwo,
int padding,
int& resultWidth,
int& resultHeight,
size_t& amountFit,
AZStd::vector<AtlasCoordinates>& out)
{
AZStd::vector<AtlasCoordinates> track;
// round max dimension down to a multiple of cellSize
AZ::u32 maxDimensionRounded = maxDimension - (maxDimension % cellSize);
// The starting width is the larger of the widest individual texture and the width required
// to fit the total texture area given the max dimension
AZ::u32 smallestWidthDueToArea = targetArea / maxDimensionRounded;
AZ::u32 minWidth = AZStd::max(static_cast<AZ::u32>(smallestWidth), smallestWidthDueToArea);
if (powerOfTwo)
{
// Starting dimension needs to be rounded up to the nearest power of two
minWidth = aznumeric_cast<AZ::u32>(pow(2, 1 + IntegerLog2(static_cast<uint32_t>(minWidth - 1))));
}
// Round min width up to the nearest compression unit
minWidth = (minWidth + (cellSize - 1)) / cellSize * cellSize;
AZ::u32 height = 0;
// Finds the optimal thin solution
// This uses a standard binary search to find the smallest width that can pack everything
AZ::u32 lower = minWidth;
AZ::u32 upper = maxDimensionRounded;
AZ::u32 width = 0;
while (lower <= upper)
{
AZ::u32 testWidth = (lower + upper) / 2; // must be divisible by cellSize because lower and upper are
bool canPack = TryPack(images, testWidth, maxDimension, padding, amountFit, track);
if (canPack)
{
// it packed, continue looking for smaller widths that pack
width = testWidth; // best fit so far
upper = testWidth - cellSize;
}
else
{
// it failed to pack, don't try any widths smaller than this
lower = testWidth + cellSize;
}
}
// Make sure we found a solution
if (width == 0)
{
return false;
}
// Find the height of the solution
for (int i = 0; i < track.size(); ++i)
{
uint32_t bottom = static_cast<uint32_t>(AZStd::max(0, track[i].GetBottom()));
if (height < bottom)
{
height = bottom;
}
}
// Fix height for power of two when applicable
if (powerOfTwo)
{
// Starting dimensions need to be rounded up to the nearest power of two
height = aznumeric_cast<AZ::u32>(pow(2, 1 + IntegerLog2(static_cast<uint32_t>(height - 1))));
}
AZ::u32 resultArea = height * width;
// This for loop starts with the optimal thin width and makes it wider at each step. For each width, it
// calculates what height would be neccesary to have a more optimal solution than the stored solution. If the
// more optimal solution is valid, it tries shrinking the height until the solution fails. The loop ends when it
// is determined that a valid solution cannot exist at further steps
for (AZ::u32 testWidth = width; testWidth <= maxDimensionRounded && resultArea / testWidth >= static_cast<AZ::u32>(smallestHeight);
testWidth = powerOfTwo ? testWidth * 2 : testWidth + cellSize)
{
// The area of test height and width should be equal or less than resultArea
// Note: We don't need to force powers of two here because the Area and the width are already powers of two
int testHeight = resultArea / testWidth * cellSize / cellSize;
// Try the tighter pack
while (TryPack(images, static_cast<int>(testWidth), testHeight, padding, amountFit, track))
{
// Loop and continue to shrink the height until you cannot do so any further
width = testWidth;
height = testHeight;
resultArea = height * width;
// Try to step down a level
testHeight = powerOfTwo ? testHeight / 2 : testHeight - cellSize;
}
}
// Output the results of the function
out = track;
resultHeight = height;
resultWidth = width;
return true;
}
// Allows us to keep the list of open spaces in order from lowest to highest area
void AtlasBuilderWorker::InsertInOrder(AZStd::vector<AtlasCoordinates>& slotList, AtlasCoordinates item)
{
int area = item.GetWidth() * item.GetHeight();
for (size_t i = 0; i < slotList.size(); ++i)
{
if (area < slotList[i].GetWidth() * slotList[i].GetHeight())
{
slotList.insert(slotList.begin() + i, item);
return;
}
}
slotList.push_back(item);
}
// Defines priority so that sorting can be meaningful. It may seem odd that larger items are "less than" smaller
// ones, but as this is a deduction of priority, not value, it is correct.
bool operator<(ImageDimension a, ImageDimension b)
{
// Prioritize first by longest size
if ((a.m_width > a.m_height ? a.m_width : a.m_height) != (b.m_width > b.m_height ? b.m_width : b.m_height))
{
return (a.m_width > a.m_height ? a.m_width : a.m_height) > (b.m_width > b.m_height ? b.m_width : b.m_height);
}
// Prioritize second by the length of the smaller side
if (a.m_width * a.m_height != b.m_width * b.m_height)
{
return a.m_width * a.m_height > b.m_width * b.m_height;
}
// Prioritize wider objects over taller objects for objects of the same size
else
{
return a.m_width > b.m_width;
}
}
// Exposes priority logic to the sorting algorithm
bool operator<(IndexImageDimension a, IndexImageDimension b) { return a.second < b.second; }
// Tests if two coordinate sets intersect
bool Collides(AtlasCoordinates a, AtlasCoordinates b)
{
return !((a.GetRight() <= b.GetLeft()) || (a.GetBottom() <= b.GetTop()) || (b.GetRight() <= a.GetLeft())
|| (b.GetBottom() <= a.GetTop()));
}
// Tests if an item collides with any items in a list
bool Collides(AtlasCoordinates item, AZStd::vector<AtlasCoordinates> list)
{
for (size_t i = 0; i < list.size(); ++i)
{
if (Collides(list[i], item))
{
return true;
}
}
return false;
}
// Returns the overlap of two intersecting coordinate sets
AtlasCoordinates GetOverlap(AtlasCoordinates a, AtlasCoordinates b)
{
return AtlasCoordinates(b.GetLeft() > a.GetLeft() ? b.GetLeft() : a.GetLeft(),
b.GetRight() < a.GetRight() ? b.GetRight() : a.GetRight(),
b.GetTop() > a.GetTop() ? b.GetTop() : a.GetTop(),
b.GetBottom() < a.GetBottom() ? b.GetBottom() : a.GetBottom());
}
// Returns the width of the widest element in imageList
int AtlasBuilderWorker::GetWidest(const ImageDimensionData& imageList)
{
int max = 0;
for (size_t i = 0; i < imageList.size(); ++i)
{
if (max < imageList[i].second.m_width)
{
max = imageList[i].second.m_width;
}
}
return max;
}
// Returns the height of the tallest element in imageList
int AtlasBuilderWorker::GetTallest(const ImageDimensionData& imageList)
{
int max = 0;
for (size_t i = 0; i < imageList.size(); ++i)
{
if (max < imageList[i].second.m_height)
{
max = imageList[i].second.m_height;
}
}
return max;
}
// Performs an operation that copies a pixel to the output
void SetPixels(AZ::u8* dest, const AZ::u8* source, int destBytes)
{
if (destBytes >= bytesPerPixel)
{
memcpy(dest, source, bytesPerPixel);
int bytesCopied = bytesPerPixel;
while (bytesCopied * 2 < destBytes)
{
memcpy(dest + bytesCopied, dest, bytesCopied);
bytesCopied *= 2;
}
memcpy(dest + bytesCopied, dest, destBytes - bytesCopied);
}
}
// Checks if we can insert an image into a slot
bool CanInsert(AtlasCoordinates slot, ImageDimension image, int padding, int farRight, int farBot)
{
int right = slot.GetLeft() + image.m_width;
if (slot.GetRight() < farRight)
{
// Add padding for my right border
right += padding;
// Round up to the nearest compression unit
right = (right + (cellSize - 1)) / cellSize * cellSize;
// Add padding for an adjacent unit's left border
right += padding;
}
int bot = slot.GetTop() + image.m_height;
if (slot.GetBottom() < farBot)
{
// Add padding for my right border
bot += padding;
// Round up to the nearest compression unit
bot = (bot + (cellSize - 1)) / cellSize * cellSize;
// Add padding for an adjacent unit's left border
bot += padding;
}
return slot.GetRight() >= right && slot.GetBottom() >= bot;
}
// Adds the necessary padding to an Atlas Coordinate
void AddPadding(AtlasCoordinates& slot, int padding, [[maybe_unused]] int farRight, [[maybe_unused]] int farBot)
{
// Add padding for my right border
int right = slot.GetRight() + padding;
// Round up to the nearest compression unit
right = (right + (cellSize - 1)) / cellSize * cellSize;
// Add padding for an adjacent unit's left border
right += padding;
// Add padding for my right border
int bot = slot.GetBottom() + padding;
// Round up to the nearest compression unit
bot = (bot + (cellSize - 1)) / cellSize * cellSize;
// Add padding for an adjacent unit's left border
bot += padding;
slot.SetRight(right);
slot.SetBottom(bot);
}
}