You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Code/CryEngine/Cry3DEngine/CloudsManager.cpp

336 lines
9.6 KiB
C++

/*
* All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or
* its licensors.
*
* For complete copyright and license terms please see the LICENSE at the root of this
* distribution (the "License"). All use of this software is governed by the License,
* or, if provided, by the license below or the license accompanying this file. Do not
* remove or modify any license notices. This file is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
*/
// Original file Copyright Crytek GMBH or its affiliates, used under license.
#include "Cry3DEngine_precompiled.h"
#include "CloudRenderNode.h"
#include "CloudsManager.h"
#include <CryPath.h>
#include "MatMan.h"
//////////////////////////////////////////////////////////////////////////
SCloudDescription::~SCloudDescription()
{
delete m_pCloudTree;
m_pCloudTree = 0;
// Unregister itself from clouds manager.
if (!filename.empty())
{
Get3DEngine()->GetCloudsManager()->Unregister(this);
}
}
//////////////////////////////////////////////////////////////////////////
SCloudDescription* CCloudsManager::LoadCloud(const char* sFilename)
{
string filename = PathUtil::ToUnixPath(sFilename);
SCloudDescription* pCloud = stl::find_in_map(m_cloudsMap, filename, NULL);
if (!pCloud)
{
XmlNodeRef root = GetISystem()->LoadXmlFromFile(filename);
if (root)
{
pCloud = new SCloudDescription;
pCloud->filename = filename;
ParseCloudFromXml(root, pCloud);
CloudParticles particles;
particles.resize(pCloud->m_particles.size());
for (uint32 i = 0; i < particles.size(); i++)
{
particles[i] = &pCloud->m_particles[i];
}
pCloud->m_pCloudTree = new SCloudQuadTree();
pCloud->m_pCloudTree->Init(pCloud->m_bounds, particles);
Register(pCloud);
}
}
return pCloud;
}
//////////////////////////////////////////////////////////////////////////
void CCloudsManager::ParseCloudFromXml(XmlNodeRef root, SCloudDescription* pCloud)
{
assert(pCloud);
pCloud->m_bounds.min = Vec3(0, 0, 0);
pCloud->m_bounds.max = Vec3(0, 0, 0);
pCloud->m_pMaterial = 0;
const char* sMtlName = root->getAttr("Material");
if (sMtlName && sMtlName[0] != '\0')
{
pCloud->m_pMaterial = GetMatMan()->LoadMaterial(sMtlName);
if (!pCloud->m_pMaterial)
{
CryWarning(VALIDATOR_MODULE_3DENGINE, VALIDATOR_ERROR, "Error: Failed to load cloud material" /*,sMtlName*/);
}
}
int numRows = 1;
int numCols = 1;
root->getAttr("TextureNumRows", numRows);
root->getAttr("TextureNumCols", numCols);
if (numRows < 1)
{
numRows = 1;
}
if (numCols < 1)
{
numCols = 1;
}
pCloud->m_textureRows = numRows;
pCloud->m_textureCols = numCols;
pCloud->m_numSprites = root->getChildCount();
pCloud->m_particles.reserve(pCloud->m_numSprites);
pCloud->m_particles.clear();
float xTextureStep = 1.0f / numCols;
float yTextureStep = 1.0f / numRows;
Vec3 pos(0, 0, 0);
int texID = 0;
float angle = 0;
float radius = 0;
Vec2 uv[2];
if (pCloud->m_numSprites > 0)
{
pCloud->m_bounds.Reset();
}
for (int i = 0; i < root->getChildCount(); i++)
{
XmlNodeRef child = root->getChild(i);
child->getAttr("Pos", pos);
child->getAttr("texID", texID);
child->getAttr("Radius", radius);
if (!child->getAttr("Angle", angle))
{
angle = 0;
}
int x = texID % numCols;
int y = texID / numCols;
uv[0].x = x * xTextureStep;
uv[0].y = y * yTextureStep;
uv[1].x = (x + 1) * xTextureStep;
uv[1].y = (y + 1) * yTextureStep;
SCloudParticle sprite(pos, radius, radius, 0, 0, uv);
pCloud->m_particles.push_back(sprite);
pCloud->m_bounds.Add(pos - Vec3(radius, radius, radius));
pCloud->m_bounds.Add(pos + Vec3(radius, radius, radius));
}
// Offset particles so that bounding box is centered at origin.
pCloud->m_offset = -pCloud->m_bounds.GetCenter();
pCloud->m_bounds.min += pCloud->m_offset;
pCloud->m_bounds.max += pCloud->m_offset;
for (uint32 i = 0; i < pCloud->m_particles.size(); i++)
{
pCloud->m_particles[i].SetPosition(pCloud->m_particles[i].GetPosition() + pCloud->m_offset);
}
}
//////////////////////////////////////////////////////////////////////////
void CCloudsManager::Register(SCloudDescription* desc)
{
assert(desc);
m_cloudsMap[desc->filename] = desc;
}
//////////////////////////////////////////////////////////////////////////
void CCloudsManager::Unregister(SCloudDescription* desc)
{
assert(desc);
m_cloudsMap.erase(desc->filename);
}
//////////////////////////////////////////////////////////////////////////
void CCloudsManager::AddCloudRenderNode(CCloudRenderNode* pNode)
{
m_cloudNodes.push_back(pNode);
}
//////////////////////////////////////////////////////////////////////////
void CCloudsManager::RemoveCloudRenderNode(CCloudRenderNode* pNode)
{
int size = m_cloudNodes.size();
for (int i = 0; i < size; i++)
{
if (m_cloudNodes[i] == pNode)
{
if (i < size - 1)
{
m_cloudNodes[i] = m_cloudNodes[size - 1];
}
m_cloudNodes.resize(size - 1);
break;
}
}
}
//!!! WARNING
//bool Sp_IsDraw = false;
//Matrix34 Sp_Mat;
//Vec3 Sp_Pos;
//float Sp_Rad;
//////////////////////////////////////////////////////////////////////////
bool CCloudsManager::CheckIntersectClouds(const Vec3& p1, const Vec3& p2)
{
for (std::vector<CCloudRenderNode*>::iterator it = m_cloudNodes.begin(); it != m_cloudNodes.end(); ++it)
{
//Sp_IsDraw = false;
if ((*it)->CheckIntersection(p1, p2))
{
//Sp_Mat = (*it)->m_offsetedMatrix;
//Sp_IsDraw = true;
return true;
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////
void CCloudsManager::MoveClouds()
{
FUNCTION_PROFILER_3DENGINE;
std::vector<CCloudRenderNode*>::iterator it(m_cloudNodes.begin());
std::vector<CCloudRenderNode*>::iterator itEnd(m_cloudNodes.end());
for (; it != itEnd; ++it)
{
(*it)->MoveCloud();
}
}
//////////////////////////////////////////////////////////////////////////
void SCloudQuadTree::Init(const AABB& bounds, const CloudParticles& particles, int maxlevel)
{
m_bounds = bounds;
if (m_level >= maxlevel)
{
m_particles.resize(particles.size());
memcpy(&m_particles[0], &particles[0], particles.size() * sizeof(SCloudParticle*));
return;
}
CloudParticles parts;
for (int k = 0; k < 4; k++)
{
AABB bnds;
parts.resize(0);
Vec3 centr = (bounds.min + bounds.max) / 2;
if (k == 0)
{
bnds = AABB(bounds.min, Vec3(centr.x, centr.y, bounds.max.z));
}
else if (k == 1)
{
bnds = AABB(Vec3(bounds.min.x, centr.y, bounds.min.z), Vec3(centr.x, bounds.max.y, bounds.max.z));
}
else if (k == 2)
{
bnds = AABB(Vec3(centr.x, bounds.min.y, bounds.min.z), Vec3(bounds.max.x, centr.y, bounds.max.z));
}
else if (k == 3)
{
bnds = AABB(Vec3(centr.x, centr.y, bounds.min.z), bounds.max);
}
for (uint32 i = 0; i < particles.size(); i++)
{
SCloudParticle* pPtcl = particles[i];
if (bnds.IsOverlapSphereBounds(pPtcl->GetPosition(), pPtcl->GetRadiusX()) ||
bnds.IsContainSphere(pPtcl->GetPosition(), pPtcl->GetRadiusX()))
{
parts.push_back(pPtcl);
}
}
if (!parts.empty())
{
m_pQuads[k] = new SCloudQuadTree(m_level + 1);
m_pQuads[k]->Init(bnds, parts, maxlevel);
}
}
}
//////////////////////////////////////////////////////////////////////////
bool SCloudQuadTree::CheckIntersection(const Vec3& p1, const Vec3& p2)
{
Vec3 outp, outp2;
if (Intersect::Lineseg_AABB(Lineseg(p1, p2), m_bounds, outp))
{
if (m_pQuads[0] && m_pQuads[0]->CheckIntersection(p1, p2))
{
return true;
}
if (m_pQuads[1] && m_pQuads[1]->CheckIntersection(p1, p2))
{
return true;
}
if (m_pQuads[2] && m_pQuads[2]->CheckIntersection(p1, p2))
{
return true;
}
if (m_pQuads[3] && m_pQuads[3]->CheckIntersection(p1, p2))
{
return true;
}
if (!m_particles.empty())
{
for (uint32 i = 0; i < m_particles.size(); i++)
{
//if(Intersect::Lineseg_Sphere(Lineseg(p1, p2), Sphere (m_particles[i]->GetPosition(), m_particles[i]->GetRadiusX()*(2.0f/3)), outp, outp2))
if (Intersect::Lineseg_Sphere(Lineseg(p1, p2), Sphere (m_particles[i]->GetPosition(), m_particles[i]->GetRadiusX()), outp, outp2))
{
//Sp_Pos = m_particles[i]->GetPosition();
//Sp_Rad = m_particles[i]->GetRadiusX()/2;
return true;
}
}
}
}
return false;
}
/*
//!!! WARNING
extern bool Sp_IsDraw;
extern Matrix34 Sp_Mat;
extern Vec3 Sp_Pos;
extern float Sp_Rad;
void C3DEngine::Hack_GetSprite(bool & IsDraw, Matrix34 & Mat, Vec3 & Pos, float & Rad)
{
IsDraw = Sp_IsDraw;
Mat = Sp_Mat;
Pos = Sp_Pos;
Rad = Sp_Rad;
}
*/