You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Code/Legacy/CryCommon/StlUtils.h

1031 lines
32 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
// Description : Various convenience utility functions for STL and alike
// Used in Animation subsystem, and in some tools
#ifndef CRYINCLUDE_CRYCOMMON_STLUTILS_H
#define CRYINCLUDE_CRYCOMMON_STLUTILS_H
#pragma once
#include <unordered_map>
#include <unordered_set>
#include <AzCore/std/containers/unordered_map.h>
#include <AzCore/std/containers/unordered_set.h>
#if (defined(LINUX) || defined(APPLE))
#include "platform.h"
#endif
#define STATIC_ASSERT(condition, errMessage) static_assert(condition, errMessage)
#include <map>
#include <set>
#include <algorithm>
#include <deque>
#include <vector>
#undef std__hash_map
#define std__hash_map AZStd::unordered_map
#define std__unordered_set AZStd::unordered_set
#define std__hash_multimap AZStd::unordered_multimap
#define std__hash AZStd::hash
#define std__unordered_map AZStd::unordered_map
template <class T, class Destructor>
class StaticInstance;
// auto-cleaner: upon destruction, calls the clear() method
template <class T>
class CAutoClear
{
public:
CAutoClear (T* p)
: m_p(p) {}
~CAutoClear () {m_p->clear(); }
protected:
T* m_p;
};
template <class Container>
unsigned sizeofArray (const Container& arr)
{
return (unsigned)(sizeof(typename Container::value_type) * arr.size());
}
template <class Container>
unsigned sizeofVector (const Container& arr)
{
return (unsigned)(sizeof(typename Container::value_type) * arr.capacity());
}
template <class Container>
unsigned sizeofArray (const Container& arr, unsigned nSize)
{
return arr.empty() ? 0u : (unsigned)(sizeof(typename Container::value_type) * nSize);
}
template <class Container>
unsigned capacityofArray (const Container& arr)
{
return (unsigned)(arr.capacity() * sizeof(arr[0]));
}
template <class T>
unsigned countElements (const std::vector<T>& arrT, const T& x)
{
unsigned nSum = 0;
for (typename std::vector<T>::const_iterator iter = arrT.begin(); iter != arrT.end(); ++iter)
{
if (x == *iter)
{
++nSum;
}
}
return nSum;
}
// [Timur]
/** Contain extensions for STL library.
*/
namespace stl
{
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Compare member of class/struct.
//
// e.g. Sort Vec3s by x component
//
// std::sort(vec3s.begin(), vec3s.end(), stl::member_compare<Vec3, float, &Vec3::x>());
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename OWNER_TYPE, typename MEMBER_TYPE, MEMBER_TYPE OWNER_TYPE::* MEMBER_PTR, typename EQUALITY = std::less<MEMBER_TYPE> >
struct member_compare
{
inline bool operator () (const OWNER_TYPE& lhs, const OWNER_TYPE& rhs) const
{
return EQUALITY()(lhs.*MEMBER_PTR, rhs.*MEMBER_PTR);
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Compare member of class/struct against parameter.
//
// e.g. Find Vec3 with x component less than 1.0
//
// std::find_if(vec3s.begin(), vec3s.end(), stl::member_compare_param<Vec3, float, &Vec3::x>(1.0f));
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename OWNER_TYPE, typename MEMBER_TYPE, MEMBER_TYPE OWNER_TYPE::* MEMBER_PTR, typename EQUALITY = std::less<MEMBER_TYPE> >
struct member_compare_param
{
inline member_compare_param(const MEMBER_TYPE& _value)
: value(_value)
{
}
inline bool operator () (const OWNER_TYPE& rhs) const
{
return EQUALITY()(rhs.*MEMBER_PTR, value);
}
const MEMBER_TYPE& value;
};
//////////////////////////////////////////////////////////////////////////
//! Searches the given entry in the map by key, and if there is none, returns the default value
//////////////////////////////////////////////////////////////////////////
template <typename Map>
inline typename Map::mapped_type find_in_map(const Map& mapKeyToValue, const typename Map::key_type& key, typename Map::mapped_type valueDefault)
{
typename Map::const_iterator it = mapKeyToValue.find (key);
if (it == mapKeyToValue.end())
{
return valueDefault;
}
else
{
return it->second;
}
}
//////////////////////////////////////////////////////////////////////////
//! Inserts and returns a reference to the given value in the map, or returns the current one if it's already there.
//////////////////////////////////////////////////////////////////////////
template <typename Map>
inline typename Map::mapped_type& map_insert_or_get(Map& mapKeyToValue, const typename Map::key_type& key, const typename Map::mapped_type& defValue = typename Map::mapped_type())
{
auto&& iresult = mapKeyToValue.insert(typename Map::value_type(key, defValue));
return iresult.first->second;
}
// searches the given entry in the map by key, and if there is none, returns the default value
// The values are taken/returned in REFERENCEs rather than values
template <typename Key, typename mapped_type, typename Traits, typename Allocator>
inline mapped_type& find_in_map_ref(std::map<Key, mapped_type, Traits, Allocator>& mapKeyToValue, const Key& key, mapped_type& valueDefault)
{
typedef std::map<Key, mapped_type, Traits, Allocator> Map;
typename Map::iterator it = mapKeyToValue.find (key);
if (it == mapKeyToValue.end())
{
return valueDefault;
}
else
{
return it->second;
}
}
template <typename Key, typename mapped_type, typename Traits, typename Allocator>
inline const mapped_type& find_in_map_ref(const std::map<Key, mapped_type, Traits, Allocator>& mapKeyToValue, const Key& key, const mapped_type& valueDefault)
{
typedef std::map<Key, mapped_type, Traits, Allocator> Map;
typename Map::const_iterator it = mapKeyToValue.find (key);
if (it == mapKeyToValue.end())
{
return valueDefault;
}
else
{
return it->second;
}
}
//////////////////////////////////////////////////////////////////////////
//! Fills vector with contents of map.
//////////////////////////////////////////////////////////////////////////
template <class Map, class Vector>
inline void map_to_vector(const Map& theMap, Vector& array)
{
array.resize(0);
array.reserve(theMap.size());
for (typename Map::const_iterator it = theMap.begin(); it != theMap.end(); ++it)
{
array.push_back(it->second);
}
}
//////////////////////////////////////////////////////////////////////////
//! Fills vector with contents of set.
//////////////////////////////////////////////////////////////////////////
template <class Set, class Vector>
inline void set_to_vector(const Set& theSet, Vector& array)
{
array.resize(0);
array.reserve(theSet.size());
for (typename Set::const_iterator it = theSet.begin(); it != theSet.end(); ++it)
{
array.push_back(*it);
}
}
//////////////////////////////////////////////////////////////////////////
//! Find and erase element from container.
// @return true if item was find and erased, false if item not found.
//////////////////////////////////////////////////////////////////////////
template <class Container, class Value>
inline bool find_and_erase(Container& container, const Value& value)
{
typename Container::iterator it = AZStd::find(container.begin(), container.end(), value);
if (it != container.end())
{
container.erase(it);
return true;
}
return false;
}
template <typename K, typename P, typename A>
inline bool find_and_erase(std::set<K, P, A>& container, const K& value)
{
return container.erase(value) > 0;
}
//////////////////////////////////////////////////////////////////////////
//! Find and erase element from container.
// @return true if item was find and erased, false if item not found.
//////////////////////////////////////////////////////////////////////////
template <class CONTAINER, class PREDICATE>
inline bool find_and_erase_if(CONTAINER& container, const PREDICATE& predicate)
{
typename CONTAINER::iterator end = container.end(), i = std::find_if(container.begin(), end, predicate);
if (i != end)
{
container.erase(i);
return true;
}
return false;
}
//////////////////////////////////////////////////////////////////////////
//! Find and erase all elements matching value from container.
// Assume that this will invalidate any exiting iterators.
// Commonly used for removing NULL pointers from collections.
//////////////////////////////////////////////////////////////////////////
template <class Container>
inline void find_and_erase_all(Container& container, const typename Container::value_type& value)
{
// Shuffles all elements != value to the front and returns the start of the removed elements.
typename Container::iterator endIter(container.end());
typename Container::iterator newEndIter(std::remove(container.begin(), endIter, value));
// Delete the removed range at the back of the container (low-cost for vector).
container.erase(newEndIter, endIter);
}
//////////////////////////////////////////////////////////////////////////
//! Find and erase element from map.
// @return true if item was find and erased, false if item not found.
//////////////////////////////////////////////////////////////////////////
template <class Container, class Key>
inline bool member_find_and_erase(Container& container, const Key& key)
{
typename Container::iterator it = container.find (key);
if (it != container.end())
{
container.erase(it);
return true;
}
return false;
}
//////////////////////////////////////////////////////////////////////////
//! Push back to container unique element.
// @return true if item added, false overwise.
template <class Container, class Value>
inline bool push_back_unique(Container& container, const Value& value)
{
if (AZStd::find(container.begin(), container.end(), value) == container.end())
{
container.push_back(value);
return true;
}
return false;
}
//////////////////////////////////////////////////////////////////////////
//! Push back to container unique element.
// @return true if item added, false overwise.
template <class CONTAINER, class PREDICATE, typename VALUE>
inline bool push_back_unique_if(CONTAINER& container, const PREDICATE& predicate, const VALUE& value)
{
typename CONTAINER::iterator end = container.end();
if (AZStd::find_if(container.begin(), end, predicate) == end)
{
container.push_back(value);
return true;
}
else
{
return false;
}
}
//////////////////////////////////////////////////////////////////////////
//! Push back to container contents of another container
template <class Container, class Iter>
inline void push_back_range(Container& container, Iter begin, Iter end)
{
for (Iter it = begin; it != end; ++it)
{
container.push_back(*it);
}
}
//////////////////////////////////////////////////////////////////////////
//! Push back to container contents of another container, if not already present
template <class Container, class Iter>
inline void push_back_range_unique(Container& container, Iter begin, Iter end)
{
for (Iter it = begin; it != end; ++it)
{
push_back_unique(container, *it);
}
}
//////////////////////////////////////////////////////////////////////////
//! Find element in container.
// @return true if item found.
template <class Container, class Value>
inline bool find(Container& container, const Value& value)
{
return std::find(container.begin(), container.end(), value) != container.end();
}
//////////////////////////////////////////////////////////////////////////
//! Find element in a sorted container using binary search with logarithmic efficiency.
//
template <class Iterator, class T>
inline Iterator binary_find(Iterator first, Iterator last, const T& value)
{
Iterator it = std::lower_bound(first, last, value);
return (it == last || value != *it) ? last : it;
}
//////////////////////////////////////////////////////////////////////////
//! Find element in a sorted container using binary search with logarithmic efficiency.
// @return true if item was inserted.
template <class Container, class Value>
inline bool binary_insert_unique(Container& container, const Value& value)
{
typename Container::iterator it = std::lower_bound(container.begin(), container.end(), value);
if (it != container.end())
{
if (*it == value)
{
return false;
}
container.insert(it, value);
}
else
{
container.insert(container.end(), value);
}
return true;
}
//////////////////////////////////////////////////////////////////////////
//! Find element in a sorted container using binary search with logarithmic efficiency.
// and erases if element found.
// @return true if item was erased.
template <class Container, class Value>
inline bool binary_erase(Container& container, const Value& value)
{
typename Container::iterator it = std::lower_bound(container.begin(), container.end(), value);
if (it != container.end() && *it == value)
{
container.erase(it);
return true;
}
return false;
}
template <typename ItT, typename Func>
ItT remove_from_heap(ItT begin, ItT end, ItT at, Func order)
{
using std::swap;
--end;
if (at == end)
{
return at;
}
size_t idx = std::distance(begin, at);
swap(*end, *at);
size_t length = std::distance(begin, end);
size_t parent, child;
if (idx > 0 && order(*(begin + idx / 2), *(begin + idx)))
{
do
{
parent = idx / 2;
swap(*(begin + idx), *(begin + parent));
idx = parent;
if (idx == 0 || order(*(begin + idx), *(begin + idx / 2)))
{
return end;
}
}
while (true);
}
else
{
do
{
child = idx * 2 + 1;
if (child >= length)
{
return end;
}
ItT left = begin + child;
ItT right = begin + child + 1;
if (right < end && order(*left, *right))
{
++child;
}
if (order(*(begin + child), *(begin + idx)))
{
return end;
}
swap(*(begin + child), *(begin + idx));
idx = child;
}
while (true);
}
return end;
}
struct container_object_deleter
{
template<typename T>
void operator()(const T* ptr) const
{
delete ptr;
}
};
//////////////////////////////////////////////////////////////////////////
//! Convert arbitary class to const char*
//////////////////////////////////////////////////////////////////////////
template <class Type>
inline const char* constchar_cast(const Type& type)
{
return type;
}
//! Specialization of string to const char cast.
template <>
inline const char* constchar_cast(const string& type)
{
return type.c_str();
}
//////////////////////////////////////////////////////////////////////////
//! Case sensetive less key for any type convertable to const char*.
//////////////////////////////////////////////////////////////////////////
template <class Type>
struct less_strcmp
{
bool operator()(const Type& left, const Type& right) const
{
return strcmp(constchar_cast(left), constchar_cast(right)) < 0;
}
};
//////////////////////////////////////////////////////////////////////////
//! Case insensetive less key for any type convertable to const char*.
template <class Type>
struct less_stricmp
{
bool operator()(const Type& left, const Type& right) const
{
return _stricmp(constchar_cast(left), constchar_cast(right)) < 0;
}
};
//////////////////////////////////////////////////////////////////////////
// Hash map usage:
// typedef AZStd::unordered_map<string,int, stl::hash_string_insensitve<string>, stl::equality_string_insensitive<string> > StringToIntHash;
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// useful when the key is already the result of an hash function
// key needs to be convertible to size_t
//////////////////////////////////////////////////////////////////////////
template <class Key>
class hash_simple
{
public:
enum // parameters for hash table
{
bucket_size = 4, // 0 < bucket_size
min_buckets = 8
};// min_buckets = 2 ^^ N, 0 < N
size_t operator()(const Key& key) const
{
return size_t(key);
};
bool operator()(const Key& key1, const Key& key2) const
{
return key1 < key2;
}
};
// simple hash class that has the avalanche property (a change in one bit affects all others)
// ... use this if you have uint32 key values!
class hash_uint32
{
public:
enum // parameters for hash table
{
bucket_size = 4, // 0 < bucket_size
min_buckets = 8 // min_buckets = 2 ^^ N, 0 < N
};
ILINE size_t operator()(uint32 a) const
{
a = (a + 0x7ed55d16) + (a << 12);
a = (a ^ 0xc761c23c) ^ (a >> 19);
a = (a + 0x165667b1) + (a << 5);
a = (a + 0xd3a2646c) ^ (a << 9);
a = (a + 0xfd7046c5) + (a << 3);
a = (a ^ 0xb55a4f09) ^ (a >> 16);
return a;
};
bool operator()(uint32 key1, uint32 key2) const
{
return key1 < key2;
}
};
//////////////////////////////////////////////////////////////////////////
//! Case sensitive string hash
//////////////////////////////////////////////////////////////////////////
template <class Key>
class hash_string
{
public:
enum // parameters for hash table
{
bucket_size = 4, // 0 < bucket_size
min_buckets = 8
};// min_buckets = 2 ^^ N, 0 < N
size_t operator()(const Key& key) const
{
unsigned int h = 0;
const char* s = constchar_cast(key);
for (; *s; ++s)
{
h = 5 * h + *(unsigned char*)s;
}
return size_t(h);
};
};
//////////////////////////////////////////////////////////////////////////
//! Case sensitive string equality
//////////////////////////////////////////////////////////////////////////
template <class Key>
class equality_string
{
public:
bool operator()(const Key& key1, const Key& key2) const
{
return strcmp(constchar_cast(key1), constchar_cast(key2)) == 0;
}
};
//////////////////////////////////////////////////////////////////////////
//! Case insensitive string hasher
//////////////////////////////////////////////////////////////////////////
template <class Key>
class hash_string_caseless
{
public:
enum // parameters for hash table
{
bucket_size = 4, // 0 < bucket_size
min_buckets = 8
};// min_buckets = 2 ^^ N, 0 < N
size_t operator()(const Key& key) const
{
unsigned int h = 0;
const char* s = constchar_cast(key);
for (; *s; ++s)
{
h = 5 * h + tolower(*(unsigned char*)s);
}
return size_t(h);
};
};
//////////////////////////////////////////////////////////////////////////
//! Case insensitive string comparer
//////////////////////////////////////////////////////////////////////////
template <class Key>
class equality_string_caseless
{
public:
bool operator()(const Key& key1, const Key& key2) const
{
return _stricmp(constchar_cast(key1), constchar_cast(key2)) == 0;
}
};
// Support for both Microsoft and SGI kind of hash_map.
#if defined(_STLP_HASH_MAP) || defined(APPLE) || defined(LINUX)
// STL Port
template <class _Key, class _Predicate = std::less<_Key> >
struct hash_compare
{
enum
{ // parameters for hash table
bucket_size = 4, // 0 < bucket_size
min_buckets = 8 // min_buckets = 2 ^^ N, 0 < N
};
size_t operator()(const _Key& _Keyval) const
{
// return hash value.
uint32 a = _Keyval;
a = (a + 0x7ed55d16) + (a << 12);
a = (a ^ 0xc761c23c) ^ (a >> 19);
a = (a + 0x165667b1) + (a << 5);
a = (a + 0xd3a2646c) ^ (a << 9);
a = (a + 0xfd7046c5) + (a << 3);
a = (a ^ 0xb55a4f09) ^ (a >> 16);
return a;
}
// Less then function.
bool operator()(const _Key& _Keyval1, const _Key& _Keyval2) const
{ // test if _Keyval1 ordered before _Keyval2
_Predicate comp;
return (comp(_Keyval1, _Keyval2));
}
};
template <class Key, class HashFunc>
struct stlport_hash_equal
{
// Equal function.
bool operator()(const Key& k1, const Key& k2) const
{
HashFunc less;
// !(k1 < k2) && !(k2 < k1)
return !less(k1, k2) && !less(k2, k1);
}
};
template <class Key, class Value, class HashFunc = hash_compare<Key>, class Alloc = std::allocator< std::pair<const Key, Value> > >
struct hash_map
: public std__hash_map<Key, Value, HashFunc, stlport_hash_equal<Key, HashFunc>, Alloc>
{
hash_map()
: std__hash_map<Key, Value, HashFunc, stlport_hash_equal<Key, HashFunc>, Alloc>(HashFunc::min_buckets) {}
};
template <class Key, class Value, class HashFunc = hash_compare<Key>, class Alloc = std::allocator< std::pair<const Key, Value> > >
struct hash_multimap
: public std__hash_multimap<Key, Value, HashFunc, stlport_hash_equal<Key, HashFunc>, Alloc>
{
hash_multimap()
: std__hash_multimap<Key, Value, HashFunc, stlport_hash_equal<Key, HashFunc>, Alloc>(HashFunc::min_buckets) {}
};
#endif
//////////////////////////////////////////////////////////////////////////
template<class T>
class intrusive_linked_list_node
{
public:
intrusive_linked_list_node() { link_to_intrusive_list(static_cast<T*>(this)); }
// Not virtual by design
~intrusive_linked_list_node() { unlink_from_intrusive_list(static_cast<T*>(this)); }
static T* get_intrusive_list_root() { return m_root_intrusive; };
static void link_to_intrusive_list(T* pNode)
{
if (m_root_intrusive)
{
// Add to the beginning of the list.
T* head = m_root_intrusive;
pNode->m_prev_intrusive = 0;
pNode->m_next_intrusive = head;
head->m_prev_intrusive = pNode;
m_root_intrusive = pNode;
}
else
{
m_root_intrusive = pNode;
pNode->m_prev_intrusive = 0;
pNode->m_next_intrusive = 0;
}
}
static void unlink_from_intrusive_list(T* pNode)
{
if (pNode == m_root_intrusive) // if head of list.
{
m_root_intrusive = pNode->m_next_intrusive;
if (m_root_intrusive)
{
m_root_intrusive->m_prev_intrusive = 0;
}
}
else
{
if (pNode->m_prev_intrusive)
{
pNode->m_prev_intrusive->m_next_intrusive = pNode->m_next_intrusive;
}
if (pNode->m_next_intrusive)
{
pNode->m_next_intrusive->m_prev_intrusive = pNode->m_prev_intrusive;
}
}
pNode->m_next_intrusive = 0;
pNode->m_prev_intrusive = 0;
}
public:
static T* m_root_intrusive;
T* m_next_intrusive;
T* m_prev_intrusive;
};
template <class T>
inline void reconstruct(T& t)
{
t.~T();
new(&t)T;
}
template <class T, class D>
inline void reconstruct(StaticInstance<T, D>& instance)
{
reconstruct(*instance);
}
template <typename T, typename A1>
inline void reconstruct(T& t, const A1& a1)
{
t.~T();
new (&t)T(a1);
}
template <typename T, typename A1, typename A2>
inline void reconstruct(T& t, const A1& a1, const A2& a2)
{
t.~T();
new (&t)T(a1, a2);
}
template <typename T, typename A1, typename A2, typename A3>
inline void reconstruct(T& t, const A1& a1, const A2& a2, const A3& a3)
{
t.~T();
new (&t)T(a1, a2, a3);
}
template <typename T, typename A1, typename A2, typename A3, typename A4>
inline void reconstruct(T& t, const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
t.~T();
new (&t)T(a1, a2, a3, a4);
}
template <typename T, typename A1, typename A2, typename A3, typename A4, typename A5>
inline void reconstruct(T& t, const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
t.~T();
new (&t)T(a1, a2, a3, a4, a5);
}
template <class T>
inline void free_container(T& t)
{
reconstruct(t);
}
template <class T, class A>
inline void free_container(std::deque<T, A>& t)
{
reconstruct(t);
}
template <class K, class D, class H, class A>
inline void free_container(std__hash_map<K, D, H, A>& t)
{
reconstruct(t);
}
template <class T, class D>
inline void free_container(StaticInstance<T, D>& instance)
{
reconstruct(*instance);
}
struct container_freer
{
template <typename T>
void operator () (T& container) const
{
stl::free_container(container);
}
};
template <typename T>
struct scoped_set
{
scoped_set(T& ref, T val)
: m_ref(&ref)
, m_oldVal(ref)
{
ref = val;
}
~scoped_set()
{
(*m_ref) = m_oldVal;
}
private:
scoped_set(const scoped_set<T>& other);
scoped_set<T>& operator = (const scoped_set<T>& other);
private:
T* m_ref;
T m_oldVal;
};
template <typename T, size_t Length, typename Func>
inline void for_each_array(T (&buffer)[Length], Func func)
{
std::for_each(&buffer[0], &buffer[Length], func);
}
template <typename T, typename D, size_t Length, typename Func>
inline void for_each_array(StaticInstance<T, D>(&buffer)[Length], Func func)
{
for (size_t idx = 0; idx < Length; ++idx)
{
func(*buffer[idx]);
}
}
template <typename T>
inline void destruct(T* p)
{
p->~T();
}
}
#define DEFINE_INTRUSIVE_LINKED_LIST(Class) \
template<> \
Class * stl::intrusive_linked_list_node<Class>::m_root_intrusive = nullptr;
// Performs a less-than compare on a serial sequence space, such that earlier values compare less-than later values.
// Unlike a normal integral value, this accounts for overflowing the limit of the underlying type.
// For example, assuming a 2-bit unsigned underlying type (with possible values 0, 1, 2 and 3), the following will hold: 0 < 1 && 1 < 2 && 2 < 3 && 3 < 0
// Assuming two equal values V1 and V2, V2 can be incremented up to "(2 ^ (bits - 1) - 1)" times and V1 < V2 will continue to hold.
// See also RFC-1982 that documents this http://tools.ietf.org/html/rfc1982
template<typename T>
struct SSerialCompare
{
static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value, "T must be an unsigned integral type");
static const T limit = (T(1) << (sizeof(T) * 8 - 1));
bool operator()(T lhs, T rhs)
{
return ((lhs < rhs) && (rhs - lhs < limit)) || ((lhs > rhs) && (lhs - rhs > limit));
}
};
template <class Container>
unsigned sizeOfVP(Container& arr)
{
int i;
unsigned size = 0;
for (i = 0; i < (int)arr.size(); i++)
{
typename Container::value_type& T = arr[i];
size += T->Size();
}
size += (arr.capacity() - arr.size()) * sizeof(typename Container::value_type);
return size;
}
template <class Container>
unsigned sizeOfV(Container& arr)
{
int i;
unsigned size = 0;
for (i = 0; i < (int)arr.size(); i++)
{
typename Container::value_type& T = arr[i];
size += T.Size();
}
size += (arr.capacity() - arr.size()) * sizeof(typename Container::value_type);
return size;
}
template <class Container>
unsigned sizeOfA(Container& arr)
{
int i;
unsigned size = 0;
for (i = 0; i < arr.size(); i++)
{
typename Container::value_type& T = arr[i];
size += T.Size();
}
return size;
}
// define the maplikestruct, used to approximate the memory requirements for a map node
namespace stl
{
struct MapLikeStruct
{
bool color;
void* parent;
void* left;
void* right;
};
}
template <class Map>
unsigned sizeOfMap(Map& map)
{
unsigned size = 0;
for (typename Map::iterator it = map.begin(); it != map.end(); it++)
{
typename Map::mapped_type& T = it->second;
size += T.Size();
}
size += map.size() * sizeof(stl::MapLikeStruct);
return size;
}
template <class Map>
unsigned sizeOfMapStr(Map& map)
{
unsigned size = 0;
for (typename Map::iterator it = map.begin(); it != map.end(); it++)
{
typename Map::mapped_type& T = it->second;
size += T.capacity();
}
size += map.size() * sizeof(stl::MapLikeStruct);
return size;
}
template <class Map>
unsigned sizeOfMapP(Map& map)
{
unsigned size = 0;
for (typename Map::iterator it = map.begin(); it != map.end(); it++)
{
typename Map::mapped_type& T = it->second;
size += T->Size();
}
size += map.size() * sizeof(stl::MapLikeStruct);
return size;
}
template <class Map>
unsigned sizeOfMapS(Map& map)
{
unsigned size = 0;
for (typename Map::iterator it = map.begin(); it != map.end(); it++)
{
typename Map::mapped_type& T = it->second;
size += sizeof(T);
}
size += map.size() * sizeof(stl::MapLikeStruct);
return size;
}
#endif // CRYINCLUDE_CRYCOMMON_STLUTILS_H