You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Code/Legacy/CryCommon/Cry_Math.h

733 lines
22 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
// Description : Common math class
#pragma once
//========================================================================================
#include <platform.h>
#include "Cry_ValidNumber.h"
#include <CryEndian.h> // eLittleEndian
#include <CryHalf.inl>
#include <MetaUtils.h>
#include <float.h>
///////////////////////////////////////////////////////////////////////////////
// Forward declarations //
///////////////////////////////////////////////////////////////////////////////
template <typename F>
struct Vec2_tpl;
template <typename F>
struct Vec3_tpl;
template <typename F>
struct Vec4_tpl;
template <typename F>
struct Ang3_tpl;
template <typename F>
struct Plane_tpl;
template <typename F>
struct AngleAxis_tpl;
template <typename F>
struct Quat_tpl;
template <typename F>
struct QuatT_tpl;
template <typename F>
struct DualQuat_tpl;
template <typename F>
struct QuatTS_tpl;
template <typename F>
struct QuatTNS_tpl;
template <typename F>
struct Diag33_tpl;
template <typename F>
struct Matrix33_tpl;
template <typename F>
struct Matrix34_tpl;
template <typename F>
struct Matrix44_tpl;
///////////////////////////////////////////////////////////////////////////////
// Definitions //
///////////////////////////////////////////////////////////////////////////////
const f32 gf_PI = f32(3.14159265358979323846264338327950288419716939937510);
const f64 g_PI = 3.14159265358979323846264338327950288419716939937510; // pi
const f32 gf_PI2 = f32(3.14159265358979323846264338327950288419716939937510 * 2.0);
const f64 g_PI2 = 3.14159265358979323846264338327950288419716939937510 * 2.0; // 2*pi
const f64 sqrt2 = 1.4142135623730950488016887242097;
const f64 sqrt3 = 1.7320508075688772935274463415059;
const f32 gf_halfPI = f32(1.57079632679489661923132169163975144209858469968755);
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
#define VEC_EPSILON (0.05f)
#define RAD_EPSILON (0.01f)
#define DEG2RAD(a) ((a) * (gf_PI / 180.0f))
#define RAD2DEG(a) ((a) * (180.0f / gf_PI))
#define DEG2COS(a) (cos_tpl((a) * (gf_PI / 180.0f)))
#define COS2DEG(a) (acos_tpl(a) * (180.0f / gf_PI))
#define RAD2HCOS(a) (cos_tpl((a * 0.5f)))
#define HCOS2RAD(a) (acos_tpl(a) * 2.0f)
#define DEG2HCOS(a) (cos_tpl((a * 0.5f) * (gf_PI / 180.0f)))
#define DEG2HSIN(a) (sin_tpl((a * 0.5f) * (gf_PI / 180.0f)))
#define HCOS2DEG(a) (acos_tpl(a) * 2.0f * (180.0f / gf_PI))
#define SIGN_MASK(x) ((intptr_t)(x) >> ((sizeof(size_t) * 8) - 1))
#define TANGENT30 0.57735026918962576450914878050196f // tan(30)
#define TANGENT30_2 0.57735026918962576450914878050196f * 2 // 2*tan(30)
#define LN2 0.69314718055994530941723212145818f // ln(2)
ILINE f32 fsel(const f32 _a, const f32 _b, const f32 _c) { return (_a < 0.0f) ? _c : _b; }
ILINE f64 fsel(const f64 _a, const f64 _b, const f64 _c) { return (_a < 0.0f) ? _c : _b; }
ILINE f32 fself(const f32 _a, const f32 _b, const f32 _c) { return (_a < 0.0f) ? _c : _b; }
ILINE f32 fsels(const f32 _a, const f32 _b, const f32 _c) { return (_a < 0.0f) ? _c : _b; }
ILINE f32 fres(const f32 _a) { return 1.f / _a; }
template<class T>
ILINE T isel(int c, T a, T b) { return (c < 0) ? b : a; }
template<class T>
ILINE T isel(int64 c, T a, T b) { return (c < 0) ? b : a; }
template<class T>
ILINE T iselnz(int c, T a, T b) { return c ? a : b; }
template<class T>
ILINE T iselnz(uint32 c, T a, T b) { return c ? a : b; }
template<class T>
ILINE T iselnz(int64 c, T a, T b) { return c ? a : b; }
template<class T>
ILINE T iselnz(uint64 c, T a, T b) { return c ? a : b; }
//provides fast way of checking against 0 (saves fcmp)
ILINE bool fzero(const float& val) { return val == 0.0f; }
ILINE bool fzero(float* pVal) { return *pVal == 0.0f; }
//////////////////////////////////////////////////////////////////////////
// Define min/max
//////////////////////////////////////////////////////////////////////////
#ifdef min
#undef min
#endif //min
#ifdef max
#undef max
#endif //max
// Bring min and max from std namespace to global scope.
template <class T>
ILINE T min(const T& a, const T& b) { return b < a ? b : a; }
template <class T>
ILINE T max(const T& a, const T& b) { return a < b ? b : a; }
template <class T, class _Compare>
ILINE const T& min(const T& a, const T& b, _Compare comp) { return comp(b, a) ? b : a; }
template <class T, class _Compare>
ILINE const T& max(const T& a, const T& b, _Compare comp) { return comp(a, b) ? b : a; }
ILINE int min_branchless(int a, int b) { int diff = a - b; int mask = diff >> 31; return (b & (~mask)) | (a & mask); }
template<class T>
ILINE T clamp_tpl(T X, T Min, T Max) { return X < Min ? Min : X < Max ? X : Max; }
template<class T>
ILINE void Limit(T& val, const T& min, const T& max)
{
if (val < min)
{
val = min;
}
else if (val > max)
{
val = max;
}
}
template<class T>
ILINE T Lerp(const T& a, const T& b, float s) { return T(a + (b - a) * s); }
//-------------------------------------------
//-- the portability functions for CPU_X86
//-------------------------------------------
#if defined(_CPU_SSE)
#include <xmmintrin.h>
#endif
ILINE f32 fabs_tpl(f32 op) { return op < 0.0f ? -op : op; }
ILINE f64 fabs_tpl(f64 op) { return fabs(op); }
ILINE int32 fabs_tpl(int32 op) { int32 mask = op >> 31; return op + mask ^ mask; }
ILINE f32 floor_tpl(f32 op) {return floorf(op); }
ILINE f64 floor_tpl(f64 op) {return floor(op); }
ILINE int32 floor_tpl(int32 op) {return op; }
ILINE f32 ceil_tpl(f32 op) {return ceilf(op); }
ILINE f64 ceil_tpl(f64 op) {return ceil(op); }
ILINE int32 ceil_tpl(int32 op) {return op; }
ILINE f32 fmod_tpl(f32 x, f32 y) {return (f32)fmodf(x, y); }
ILINE f64 fmod_tpl(f64 x, f64 y) {return (f32)fmod(x, y); }
ILINE void sincos_tpl (f32 angle, f32* pSin, f32* pCos) { *pSin = f32(sin(angle)); *pCos = f32(cos(angle)); }
ILINE void sincos_tpl (f64 angle, f64* pSin, f64* pCos) { *pSin = f64(sin(angle)); *pCos = f64(cos(angle)); }
ILINE f32 cos_tpl(f32 op) { return cosf(op); }
ILINE f64 cos_tpl(f64 op) { return cos(op); }
ILINE f32 sin_tpl(f32 op) { return sinf(op); }
ILINE f64 sin_tpl(f64 op) { return sin(op); }
ILINE f32 acos_tpl(f32 op) { return acosf(clamp_tpl(op, -1.0f, +1.0f)); }
ILINE f64 acos_tpl(f64 op) { return acos(clamp_tpl(op, -1.0, +1.0)); }
ILINE f32 asin_tpl(f32 op) { return asinf(clamp_tpl(op, -1.0f, +1.0f)); }
ILINE f64 asin_tpl(f64 op) { return asin(clamp_tpl(op, -1.0, +1.0)); }
ILINE f32 atan_tpl(f32 op) { return atanf(op); }
ILINE f64 atan_tpl(f64 op) { return atan(op); }
ILINE f32 atan2_tpl(f32 op1, f32 op2) { return atan2f(op1, op2); }
ILINE f64 atan2_tpl(f64 op1, f64 op2) { return atan2(op1, op2); }
ILINE f32 tan_tpl(f32 op) {return tanf(op); }
ILINE f64 tan_tpl(f64 op) {return tan(op); }
ILINE f32 exp_tpl(f32 op) { return expf(op); }
ILINE f64 exp_tpl(f64 op) { return exp(op); }
ILINE f32 log_tpl(f32 op) { return logf(op); }
ILINE f64 log_tpl(f64 op) { return log(op); }
ILINE f32 pow_tpl(f32 x, f32 y) {return (f32) pow((f64)x, (f64)y); }
ILINE f64 pow_tpl(f64 x, f64 y) {return pow(x, y); }
#if defined(_CPU_SSE)
ILINE f32 sqrt_tpl(f32 op)
{
__m128 s = _mm_sqrt_ss(_mm_set_ss(op));
float r;
_mm_store_ss(&r, s);
return r;
}
ILINE f64 sqrt_tpl(f64 op)
{
return sqrt(op);
}
ILINE f32 sqrt_fast_tpl(f32 op)
{
return sqrt_tpl(op);
}
ILINE f64 sqrt_fast_tpl(f64 op)
{
return sqrt_tpl(op);
}
ILINE f32 isqrt_tpl(f32 op)
{
__m128 value = _mm_set_ss(op);
__m128 oneHalf = _mm_set_ss(0.5f);
__m128 threeHalfs = _mm_set_ss(1.5f);
__m128 simdRecipSqrt = _mm_rsqrt_ss(value);
__m128 inverseMult = _mm_mul_ps(_mm_mul_ss(_mm_mul_ss(value, simdRecipSqrt), simdRecipSqrt), oneHalf);
__m128 inverseInner = _mm_sub_ps(threeHalfs, inverseMult);
__m128 newtonIteration1 = _mm_mul_ss(simdRecipSqrt, inverseInner);
float r;
_mm_store_ss(&r, newtonIteration1);
return r;
}
ILINE f64 isqrt_tpl(f64 op)
{
return 1.0 / sqrt(op);
}
ILINE f32 isqrt_fast_tpl(f32 op)
{
return isqrt_tpl(op);
}
ILINE f64 isqrt_fast_tpl(f64 op)
{
return isqrt_tpl(op);
}
ILINE f32 isqrt_safe_tpl(f32 value)
{
return isqrt_tpl(value + (std::numeric_limits<f32>::min)());
}
ILINE f64 isqrt_safe_tpl(f64 value)
{
return isqrt_tpl(value + (std::numeric_limits<f64>::min)());
}
#elif defined (__ARM_NEON__)
#include "arm_neon.h"
template <int n>
float isqrt_helper(float f)
{
float32x2_t v = vdup_n_f32(f);
float32x2_t r = vrsqrte_f32(v);
// n+1 newton iterations because initial approximation is crude
for (int i = 0; i <= n; ++i)
{
r = vrsqrts_f32(v * r, r) * r;
}
return vget_lane_f32(r, 0);
}
ILINE f32 sqrt_tpl(f32 op) { return op != 0.0f ? op* isqrt_helper<1>(op) : op; }
ILINE f64 sqrt_tpl(f64 op) { return sqrt(op); }
ILINE f32 sqrt_fast_tpl(f32 op) { return op != 0.0f ? op* isqrt_helper<0>(op) : op; }
ILINE f64 sqrt_fast_tpl(f64 op) { return sqrt(op); }
ILINE f32 isqrt_tpl(f32 op) { return isqrt_helper<1>(op); }
ILINE f64 isqrt_tpl(f64 op) { return 1.0 / sqrt(op); }
ILINE f32 isqrt_fast_tpl(f32 op) { return isqrt_helper<0>(op); }
ILINE f64 isqrt_fast_tpl(f64 op) { return 1.0 / sqrt(op); }
ILINE f32 isqrt_safe_tpl(f32 op) { return isqrt_helper<1>(op + FLT_MIN); }
ILINE f64 isqrt_safe_tpl(f64 op) { return 1.0 / sqrt(op + DBL_MIN); }
#else
#error unsupported CPU
#endif
ILINE int32 int_round(f32 f) { return f < 0.f ? int32(f - 0.5f) : int32(f + 0.5f); }
ILINE int32 pos_round(f32 f) { return int32(f + 0.5f); }
ILINE int64 int_round(f64 f) { return f < 0.0 ? int64(f - 0.5) : int64(f + 0.5); }
ILINE int64 pos_round(f64 f) { return int64(f + 0.5); }
ILINE int32 int_ceil(f32 f) { int32 i = int32(f); return (f > f32(i)) ? i + 1 : i; }
ILINE int64 int_ceil(f64 f) { int64 i = int64(f); return (f > f64(i)) ? i + 1 : i; }
ILINE float ufrac8_to_float(float u) { return u * (1.f / 255.f); }
ILINE float ifrac8_to_float(float i) { return i * (1.f / 127.f); }
ILINE uint8 float_to_ufrac8(float f) { int i = pos_round(f * 255.f); assert(i >= 0 && i < 256); return uint8(i); }
ILINE int8 float_to_ifrac8(float f) { int i = int_round(f * 127.f); assert(abs(i) <= 127); return int8(i); }
template<class F>
ILINE F sqr(const F& op) { return op * op; }
template<class F>
ILINE F sqr(const Vec2_tpl<F>& op) { return op | op; }
template<class F>
ILINE F sqr(const Vec3_tpl<F>& op) { return op | op; }
template<class F>
ILINE F sqr_signed(const F& op) { return op * fabs_tpl(op); }
template<class F>
ILINE F cube(const F& op) { return op * op * op; }
template<class F>
ILINE F square(F fOp) { return(fOp * fOp); }
ILINE float div_min(float n, float d, float m) { return n * d < m * d * d ? n / d : m; }
// Utility functions for returning -1 if input is negative and non-zero, returns positive 1 otherwise
// Uses extensive bit shifting for performance reasons.
ILINE int32 sgnnz(f64 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = (f32)x;
return ((u.i >> 31) << 1) + 1;
}
ILINE int32 sgnnz(f32 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = x;
return ((u.i >> 31) << 1) + 1;
}
ILINE int32 sgnnz(int32 x) { return ((x >> 31) << 1) + 1; }
ILINE f32 fsgnnz(f32 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = x;
u.i = (u.i & 0x80000000) | 0x3f800000;
return u.f;
}
ILINE int32 isneg(f32 x)
{
union
{
f32 f;
uint32 i;
} u;
u.f = x;
return (int32)(u.i >> 31);
}
ILINE int32 isneg(f64 x)
{
union
{
f32 f;
uint32 i;
} u;
u.f = (f32)x;
return (int32)(u.i >> 31);
}
ILINE int32 isneg(int32 x) { return (int32)((uint32)x >> 31); }
ILINE int32 sgn(f64 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = (f32)x;
return (u.i >> 31) + ((u.i - 1) >> 31) + 1;
}
ILINE int32 sgn(f32 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = x;
return (u.i >> 31) + ((u.i - 1) >> 31) + 1;
}
ILINE int32 sgn(int32 x) { return (x >> 31) + ((x - 1) >> 31) + 1; }
ILINE f32 fsgnf(f32 x) { return f32(sgn(x)); }
ILINE int32 isnonneg(f32 x)
{
union
{
f32 f;
uint32 i;
} u;
u.f = x;
return (int32)(u.i >> 31 ^ 1);
}
ILINE int32 isnonneg(f64 x)
{
union
{
f32 f;
uint32 i;
} u;
u.f = (f32)x;
return (int32)(u.i >> 31 ^ 1);
}
ILINE int32 isnonneg(int32 x) { return (int32)((uint32)x >> 31 ^ 1); }
ILINE int32 getexp(f32 x) { return (int32)(*(uint32*)&x >> 23 & 0x0FF) - 127; }
ILINE int32 getexp(f64 x) { return (int32)(*((uint32*)&x + 1) >> 20 & 0x7FF) - 1023; }
ILINE f32& setexp(f32& x, int32 iexp) { (*(uint32*)& x &= ~(0x0FF << 23)) |= (iexp + 127) << 23; return x; }
ILINE f64& setexp(f64& x, int32 iexp) { (*((uint32*)&x + 1) &= ~(0x7FF << 20)) |= (iexp + 1023) << 20; return x; }
ILINE int32 iszero(f32 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = x;
u.i &= 0x7FFFFFFF;
return -(u.i >> 31 ^ (u.i - 1) >> 31);
}
ILINE int32 iszero(f64 x)
{
union
{
f32 f;
int32 i;
} u;
u.f = (f32)x;
u.i &= 0x7FFFFFFF;
return -((u.i >> 31) ^ (u.i - 1) >> 31);
}
ILINE int32 iszero(int32 x) { return -(x >> 31 ^ (x - 1) >> 31); }
#if defined(PLATFORM_64BIT) && !defined(__clang__)
ILINE int64 iszero(__int64 x) { return -(x >> 63 ^ (x - 1) >> 63); }
#endif
#if defined(PLATFORM_64BIT) && defined(__clang__) && !defined(LINUX)
ILINE int64 iszero(int64_t x) { return -(x >> 63 ^ (x - 1) >> 63); }
#endif
#if defined(PLATFORM_64BIT) && (defined(LINUX) || defined(APPLE))
ILINE int64 iszero(long int x) { return -(x >> 63 ^ (x - 1) >> 63); }
#endif
ILINE float if_neg_else(float test, float val_neg, float val_nonneg) { return (float)fsel(test, val_nonneg, val_neg); }
ILINE float if_pos_else(float test, float val_pos, float val_nonpos) { return (float)fsel(-test, val_nonpos, val_pos); }
template<class F>
ILINE int32 inrange(F x, F end1, F end2) { return isneg(fabs_tpl(end1 + end2 - x * (F)2) - fabs_tpl(end1 - end2)); }
template<class F>
ILINE F cond_select(int32 bFirst, F op1, F op2) { F arg[2] = { op1, op2 }; return arg[bFirst ^ 1]; }
template<class F>
ILINE int32 idxmax3(const F* pdata)
{
int32 imax = isneg(pdata[0] - pdata[1]);
imax |= isneg(pdata[imax] - pdata[2]) << 1;
return imax & (2 | (imax >> 1 ^ 1));
}
template<class F>
ILINE int32 idxmax3(const Vec3_tpl<F>& vec)
{
int32 imax = isneg(vec.x - vec.y);
imax |= isneg(vec[imax] - vec.z) << 1;
return imax & (2 | (imax >> 1 ^ 1));
}
template<class F>
ILINE int32 idxmin3(const F* pdata)
{
int32 imin = isneg(pdata[1] - pdata[0]);
imin |= isneg(pdata[2] - pdata[imin]) << 1;
return imin & (2 | (imin >> 1 ^ 1));
}
template<class F>
ILINE int32 idxmin3(const Vec3_tpl<F>& vec)
{
int32 imin = isneg(vec.y - vec.x);
imin |= isneg(vec.z - vec[imin]) << 1;
return imin & (2 | (imin >> 1 ^ 1));
}
// Approximation of exp(-x)
ILINE float approxExp(float x) { return fres(1.f + x); }
// Approximation of 1.f - exp(-x)
ILINE float approxOneExp(float x) { return x * fres(1.f + x); }
ILINE int ilog2(uint64 x) // if x==1<<i (i=0..63), returns i
{
#if defined(CRY_PLATFORM_X64)
# if defined(AZ_RESTRICTED_PLATFORM)
# include AZ_RESTRICTED_FILE(Cry_Math_h)
# endif
# if defined(AZ_RESTRICTED_SECTION_IMPLEMENTED)
# undef AZ_RESTRICTED_SECTION_IMPLEMENTED
# elif defined(CRY_PLATFORM_LINUX)
# define HAS_BIT_SCAN_FORWARD64 0
# else
# define HAS_BIT_SCAN_FORWARD64 1
# endif
#endif
#if HAS_BIT_SCAN_FORWARD64
unsigned long i;
_BitScanForward64(&i, x);
return i;
#else
union
{
float f;
uint i;
} u;
u.f = (float)x;
return (u.i >> 23) - 127;
#endif
}
static int32 inc_mod3[] = {1, 2, 0}, dec_mod3[] = {2, 0, 1};
#ifdef PHYSICS_EXPORTS
#define incm3(i) inc_mod3[i]
#define decm3(i) dec_mod3[i]
#else
ILINE int32 incm3(int32 i) { return i + 1 & (i - 2) >> 31; }
ILINE int32 decm3(int32 i) { return i - 1 + ((i - 1) >> 31 & 3); }
#endif
//////////////////////////////////////////////////////////////////////////
enum type_zero
{
ZERO
};
enum type_min
{
VMIN
};
enum type_max
{
VMAX
};
enum type_identity
{
IDENTITY
};
#include "Cry_Vector2.h"
#include "Cry_Vector3.h"
#include "Cry_Vector4.h"
#include "Cry_MatrixDiag.h"
#include "Cry_Matrix33.h"
#include "Cry_Matrix34.h"
#include "Cry_Matrix44.h"
#include "Cry_Quat.h"
#include "Cry_HWVector3.h"
#include "Cry_HWMatrix.h"
#include "Cry_XOptimise.h"
//////////////////////////////////////////////////////////////////////////
/// This function relaxes a value (val) towards a desired value (to) whilst maintaining continuity
/// of val and its rate of change (valRate). timeDelta is the time between this call and the previous one.
/// The caller would normally keep val and valRate as working variables, and smoothTime is normally
/// a fixed parameter. The to/timeDelta values can change.
///
/// Implementation details:
///
/// This is a critically damped spring system. A linear spring is attached between "val" and "to" that
/// drags "val" to "to". At the same time a damper between the two removes oscillations; it's tweaked
/// so it doesn't dampen more than necessary. In combination this gives smooth ease-in and ease-out behavior.
///
/// smoothTime can be interpreted in a couple of ways:
/// - it's the "expected time to reach the target when at maximum velocity" (the target will, however, not be reached
/// in that time because the speed will decrease the closer it gets to the target)
/// - it's the 'lag time', how many seconds "val" lags behind "to". If your
/// target has a certain speed, the lag distance is simply the smoothTime times that speed.
/// - it's 2/omega, where omega is the spring's natural frequency (or less formally a measure of the spring stiffness)
///
/// The implementation is stable for varying timeDelta, but for performance reasons it uses a polynomial approximation
/// to the exponential function. The approximation works well (within 0.1% of accuracy) when smoothTime > 2*deltaTime,
/// which is usually the case. (but it might be troublesome when you want a stiff spring or have frame hikes!)
/// The implementation handles cases where smoothTime==0 separately and reliably. In that case the target will be
/// reached immediately, and valRate is updated appropriately.
///
/// Based on "Critically Damped Ease-In/Ease-Out Smoothing", Thomas Lowe, Game Programming Gems IV
///
template <typename T>
ILINE void SmoothCD(
T& val, ///< in/out: value to be smoothed
T& valRate, ///< in/out: rate of change of the value
const float timeDelta, ///< in: time interval
const T& to, ///< in: the target value
const float smoothTime) ///< in: timescale for smoothing
{
if (smoothTime > 0.0f)
{
const float omega = 2.0f / smoothTime;
const float x = omega * timeDelta;
const float exp = 1.0f / (1.0f + x + 0.48f * x * x + 0.235f * x * x * x);
const T change = (val - to);
const T temp = (T)((valRate + change * omega) * timeDelta);
valRate = (T)((valRate - temp * omega) * exp);
val = (T)(to + (change + temp) * exp);
}
else if (timeDelta > 0.0f)
{
valRate = (T)((to - val) / timeDelta);
val = to;
}
else
{
val = to;
T zeroizeAmount = valRate;
valRate -= zeroizeAmount; // zero it...
}
}
template <typename T>
ILINE void SmoothCDWithMaxRate(
T& val, ///< in/out: value to be smoothed
T& valRate, ///< in/out: rate of change of the value
const float timeDelta, ///< in: time interval
const T& to, ///< in: the target value
const float smoothTime, ///< in: timescale for smoothing
const T& maxValRate) ///< in: maximum allowed rate of change
{
if (smoothTime > 0.0f)
{
const float omega = 2.0f / smoothTime;
const float x = omega * timeDelta;
const float exp = 1.0f / (1.0f + x + 0.48f * x * x + 0.235f * x * x * x);
const T unclampedChange = val - to;
const T maxChange = maxValRate * smoothTime;
const T clampedChange = clamp_tpl<T>(unclampedChange, -maxChange, maxChange);
const T clampedTo = val - clampedChange;
const T temp = (T)((valRate + clampedChange * omega) * timeDelta);
valRate = (T)((valRate - temp * omega) * exp);
val = (T)(clampedTo + (clampedChange + temp) * exp);
}
else if (timeDelta > 0.0f)
{
const T unclampedRate = (T)((to - val) / timeDelta);
valRate = clamp_tpl<T>(unclampedRate, -maxValRate, maxValRate);
val += valRate * timeDelta;
}
else
{
val = to;
T zeroizeAmount = valRate;
valRate -= zeroizeAmount; // zero it...
}
}
// Smoothes linear blending into cubic (b-spline) with 0-derivatives
// near 0 and 1
inline f32 SmoothBlendValue (const f32 fBlend)
{
const f32 fBlendAdj = fBlend - 0.5f;
return (f32)fsel(-fBlend, 0.f, fsel(fBlend - 1.f, 1.f, 0.5f - 2.f * (fBlendAdj * fBlendAdj * fBlendAdj) + 1.5f * fBlendAdj));
}
// function for safe comparsion of floating point values
ILINE bool fcmp(f32 fA, f32 fB, f32 fEpsilon = FLT_EPSILON)
{
return fabs(fA - fB) <= fEpsilon;
}
//! Given an arbitrary unit vector this function will compute two axes to build the orthonormal basis.
//! \param n Unit 3D vector
//! \param[out] b1 Orthonormal axis vector
//! \param[out] b2 Orthonormal axis vector
inline void GetBasisVectors(const Vec3& n, Vec3& b1, Vec3& b2)
{
if (n.z < FLT_EPSILON - 1.0f)
{
b1 = Vec3(0.0f, -1.0f, 0.0f);
b2 = Vec3(-1.0f, 0.0f, 0.0f);
return;
}
const float a = 1.0f / (1.0f + n.z);
const float b = -n.x * n.y * a;
b1 = Vec3(1.0f - n.x * n.x * a, b, -n.x);
b2 = Vec3(b, 1.0f - n.y * n.y * a, -n.y);
}