You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Code/Legacy/CryCommon/Cry_GeoIntersect.h

959 lines
39 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
// Description : Common intersection-tests
#ifndef CRYINCLUDE_CRYCOMMON_CRY_GEOINTERSECT_H
#define CRYINCLUDE_CRYCOMMON_CRY_GEOINTERSECT_H
#pragma once
#include <Cry_Geo.h>
namespace Intersect {
inline bool Ray_Plane(const Ray& ray, const Plane_tpl<f32>& plane, Vec3& output, bool bSingleSidePlane = true)
{
float cosine = plane.n | ray.direction;
//REJECTION 1: if "line-direction" is perpendicular to "plane-normal", an intersection is not possible! That means ray is parallel
// to the plane
//REJECTION 2: if bSingleSidePlane == true we deal with single-sided planes. That means
// if "line-direction" is pointing in the same direction as "the plane-normal",
// an intersection is not possible!
if ((cosine == 0.0f) || // normal is orthogonal to vector, cant intersect
(bSingleSidePlane && (cosine > 0.0f))) // we are trying to find an intersection in the same direction as the plane normal
{
return false;
}
float numer = plane.DistFromPlane(ray.origin);
float fLength = -numer / cosine;
output = ray.origin + (ray.direction * fLength);
//skip, if cutting-point is "behind" ray.origin
if (fLength < 0.0f)
{
return false;
}
return true; //intersection occurred
}
inline bool Line_Plane(const Line& line, const Plane_tpl<f32>& plane, Vec3& output, bool bSingleSidePlane = true)
{
float cosine = plane.n | line.direction;
//REJECTION 1: if "line-direction" is perpendicular to "plane-normal", an intersection is not possible! That means ray is parallel
// to the plane
//REJECTION 2: if bSingleSidePlane == true we deal with single-sided planes. That means
// if "line-direction" is pointing in the same direction as "the plane-normal",
// an intersection is not possible!
if ((cosine == 0.0f) || // normal is orthogonal to vector, cant intersect
(bSingleSidePlane && (cosine > 0.0f))) // we are trying to find an intersection in the same direction as the plane normal
{
return false;
}
//an intersection is possible: calculate the exact point!
float perpdist = plane | line.pointonline;
float pd_c = -perpdist / cosine;
output = line.pointonline + (line.direction * pd_c);
return true; //intersection occurred
}
// Algorithm description:
// http://softsurfer.com/Archive/algorithm_0104/algorithm_0104B.htm#Line-Plane%20Intersection
template <typename T>
inline bool Segment_Plane(const Lineseg_tpl<T>& segment, const Plane_tpl<T>& plane, Vec3_tpl<T>& vOutput, bool bSingleSidePlane = true)
{
Vec3_tpl<T> vSegment = segment.end - segment.start;
T planeNormalDotSegment = plane.n | vSegment;
//REJECTION 1: if "line-direction" is perpendicular to "plane-normal", an intersection is not possible! That means ray is parallel
// to the plane
//REJECTION 2: if bSingleSidePlane == true we deal with single-sided planes. That means
// if "line-direction" is pointing in the same direction as "the plane-normal",
// an intersection is not possible!
if ((planeNormalDotSegment == T(0)) || // normal is orthogonal to vector, cant intersect
(bSingleSidePlane && (planeNormalDotSegment > T(0)))) // we are trying to find an intersection in the same direction as the plane normal
{
return false;
}
// n Dot (segment.start - closest_point_in_plane) = 1 * DistFromPlane(segment.start) * cos(0) = DistFromPlane(segment.start)
T distanceToStart = plane.DistFromPlane(segment.start);
T scale = -distanceToStart / planeNormalDotSegment;
vOutput = segment.start + (vSegment * scale);
// skip, if segment start and ends in one side of the plane
if ((scale < T(0)) || (scale > T(1)))
{
return false;
}
return true; //intersection occurred
}
/// Intersection between two line segments in 2D (ignoring z coordinate). The two parametric
/// values are set to between 0 and 1 if intersection occurs. If intersection does not occur
/// their values will indicate the parametric values for intersection of the lines extended
/// beyond the segment lengths. Parallel lines will result in a negative result, but the parametric
/// values will both be equal to 0.5
template<typename F>
inline bool Lineseg_Lineseg2D(const Lineseg_tpl<F>& lineA, const Lineseg_tpl<F>& lineB, F& outA, F& outB)
{
const F Epsilon = (F)0.0000001;
Vec3_tpl<F> delta = lineB.start - lineA.start;
Vec3_tpl<F> dirA = lineA.end - lineA.start;
Vec3_tpl<F> dirB = lineB.end - lineB.start;
F det = dirA.x * dirB.y - dirA.y * dirB.x;
F detA = delta.x * dirB.y - delta.y * dirB.x;
F detB = delta.x * dirA.y - delta.y * dirA.x;
F absDet = fabs_tpl(det);
if (absDet >= Epsilon)
{
F invDet = (F)1.0 / det;
F a = detA * invDet;
F b = detB * invDet;
outA = a;
outB = b;
if ((a > (F)1.0) || (a < (F)0.0) || (b > (F)1.0) || (b < (F)0.0))
{
return false;
}
}
else
{
outA = outB = (F)0.5;
return false;
}
return true;
}
/// Calculates the intersection between a line segment and a polygon, in 2D (i.e.
/// ignoring z coordinate). The VecContainer should be a container of Vec3 such
/// that we can traverse it using iterators. intersectionPoint is set to the intersection
/// point or the end of the segment, if no intersection.
template<typename VecIterator>
inline bool Lineseg_Polygon2D(const Lineseg& lineseg, VecIterator polygonBegin, VecIterator polygonEnd, Vec3& intersectionPoint, Vec3* pNormal = NULL, bool bForceNormalOutwards = false)
{
intersectionPoint = lineseg.end;
bool gotIntersection = false;
float tmin = 1.0f;
VecIterator iend = polygonEnd;
VecIterator li, linext;
Lineseg intersectSegment;
for (li = polygonBegin; li != iend; ++li)
{
linext = li;
++linext;
if (linext == iend)
{
linext = polygonBegin;
}
Lineseg segmentPoly(*li, *linext);
float s, t;
if (Intersect::Lineseg_Lineseg2D(lineseg, segmentPoly, s, t))
{
if (s < 0.00001f || s > 0.99999f || t < 0.00001f || t > 0.99999f)
{
continue;
}
if (s < tmin)
{
tmin = s;
gotIntersection = true;
intersectSegment = segmentPoly;
}
}
}
intersectionPoint = lineseg.start + tmin * (lineseg.end - lineseg.start);
if (pNormal && gotIntersection)
{
Vec3 vPolyseg = intersectSegment.end - intersectSegment.start;
Vec3 vIntSeg = (lineseg.end - lineseg.start);
pNormal->x = vPolyseg.y;
pNormal->y = -vPolyseg.x;
pNormal->z = 0;
pNormal->NormalizeSafe();
// returns the normal towards the start point of the intersecting segment (if it's not forced to be outwards)
if (!bForceNormalOutwards && vIntSeg.Dot(*pNormal) > 0)
{
pNormal->x = -pNormal->x;
pNormal->y = -pNormal->y;
}
}
return gotIntersection;
}
template<typename VecContainer>
inline bool Lineseg_Polygon2D(const Lineseg& lineseg, const VecContainer& polygon, Vec3& intersectionPoint, Vec3* pNormal = NULL, bool bForceNormalOutwards = false)
{
return Lineseg_Polygon2D(lineseg, polygon.begin(), polygon.end(), intersectionPoint, pNormal, bForceNormalOutwards);
}
/*
* calculates intersection between a line and a triangle.
* IMPORTANT: this is a single-sided intersection test. That means its not enough
* that the triangle and line overlap, its also important that the triangle
* is "visible" when you are looking along the line-direction.
*
* If you need a double-sided test, you'll have to call this function twice with
* reversed order of triangle vertices.
*
* return values
* if there is an intertection the functions return "true" and stores the
* 3d-intersection point in "output". if the function returns "false" the value in
* "output" is undefined
*
*/
inline bool Line_Triangle(const Line& line, const Vec3& v0, const Vec3& v1, const Vec3& v2, Vec3& output)
{
const float Epsilon = 0.0000001f;
Vec3 edgeA = v1 - v0;
Vec3 edgeB = v2 - v0;
Vec3 dir = line.direction;
Vec3 p = dir.Cross(edgeA);
Vec3 t = line.pointonline - v0;
Vec3 q = t.Cross(edgeB);
float dot = edgeB.Dot(p);
float u = t.Dot(p);
float v = dir.Dot(q);
float DotGreaterThanEpsilon = dot - Epsilon;
float VGreaterEqualThanZero = v;
float UGreaterEqualThanZero = u;
float UVLessThanDot = dot - (u + v);
float ULessThanDot = dot - u;
float UVGreaterEqualThanZero = (float)fsel(VGreaterEqualThanZero, UGreaterEqualThanZero, VGreaterEqualThanZero);
float UUVLessThanDot = (float)fsel(UVLessThanDot, ULessThanDot, UVLessThanDot);
float BothGood = (float)fsel(UVGreaterEqualThanZero, UUVLessThanDot, UVGreaterEqualThanZero);
float AllGood = (float)fsel(DotGreaterThanEpsilon, BothGood, DotGreaterThanEpsilon);
if (AllGood < 0.0f)
{
return false;
}
float dt = edgeA.Dot(q) / dot;
Vec3 result = (dir * dt) + line.pointonline;
output = result;
return true;
}
/*
* calculates intersection between a ray and a triangle.
* IMPORTANT: this is a single-sided intersection test. That means its not sufficient
* that the triangle and rayt overlap, its also important that the triangle
* is "visible" when you from the origin along the ray-direction.
*
* If you need a double-sided test, you'll have to call this function twice with
* reversed order of triangle vertices.
*
* return values
* if there is an intertection the functions return "true" and stores the
* 3d-intersection point in "output". if the function returns "false" the value in
* "output" is undefined
*/
inline bool Ray_Triangle(const Ray& ray, const Vec3& v0, const Vec3& v1, const Vec3& v2, Vec3& output)
{
const float Epsilon = 0.0000001f;
Vec3 edgeA = v1 - v0;
Vec3 edgeB = v2 - v0;
Vec3 dir = ray.direction;
Vec3 p = dir.Cross(edgeA);
Vec3 t = ray.origin - v0;
Vec3 q = t.Cross(edgeB);
float dot = edgeB.Dot(p);
float u = t.Dot(p);
float v = dir.Dot(q);
float DotGreaterThanEpsilon = dot - Epsilon;
float VGreaterEqualThanZero = v;
float UGreaterEqualThanZero = u;
float UVLessThanDot = dot - (u + v);
float ULessThanDot = dot - u;
float UVGreaterEqualThanZero = (float)fsel(VGreaterEqualThanZero, UGreaterEqualThanZero, VGreaterEqualThanZero);
float UUVLessThanDot = (float)fsel(UVLessThanDot, ULessThanDot, UVLessThanDot);
float BothGood = (float)fsel(UVGreaterEqualThanZero, UUVLessThanDot, UVGreaterEqualThanZero);
float AllGood = (float)fsel(DotGreaterThanEpsilon, BothGood, DotGreaterThanEpsilon);
if (AllGood < 0.0f)
{
return false;
}
float dt = edgeA.Dot(q) / dot;
Vec3 result = (dir * dt) + ray.origin;
output = result;
float AfterStart = (result - ray.origin).Dot(dir);
return AfterStart >= 0.0f;
}
/*
* Description:
* Calculates intersection between a line-segment and a triangle.
* Remarks:
* IMPORTANT: this is a single-sided intersection test. That means its not sufficient
* that the triangle and line-segment overlap, its also important that the triangle
* is "visible" when you are looking along the linesegment from "start" to "end".
* Notes:
* If you need a double-sided test, you'll have to call this function twice with
* reversed order of triangle vertices.
*
* Return value:
* If there is an intertection the the functions return "true" and stores the
* 3d-intersection point in "output". if the function returns "false" the value in
* "output" is undefined. If pT is non-zero then if there is an intersection the "t-value"
* (from 0-1) is also returned (unmodified if there is no intersection).
*/
inline bool Lineseg_Triangle(const Lineseg& lineseg, const Vec3& v0, const Vec3& v1, const Vec3& v2, Vec3& output,
float* outT = 0)
{
const float Epsilon = 0.0000001f;
Vec3 edgeA = v1 - v0;
Vec3 edgeB = v2 - v0;
Vec3 dir = lineseg.end - lineseg.start;
Vec3 p = dir.Cross(edgeA);
Vec3 t = lineseg.start - v0;
Vec3 q = t.Cross(edgeB);
float dot = edgeB.Dot(p);
float u = t.Dot(p);
float v = dir.Dot(q);
float DotGreaterThanEpsilon = dot - Epsilon;
float VGreaterEqualThanZero = v;
float UGreaterEqualThanZero = u;
float UVLessThanDot = dot - (u + v);
float ULessThanDot = dot - u;
float UVGreaterEqualThanZero = (float)fsel(VGreaterEqualThanZero, UGreaterEqualThanZero, VGreaterEqualThanZero);
float UUVLessThanDot = (float)fsel(UVLessThanDot, ULessThanDot, UVLessThanDot);
float BothGood = (float)fsel(UVGreaterEqualThanZero, UUVLessThanDot, UVGreaterEqualThanZero);
float AllGood = (float)fsel(DotGreaterThanEpsilon, BothGood, DotGreaterThanEpsilon);
if (AllGood < 0.0f)
{
return false;
}
float dt = edgeA.Dot(q) / dot;
Vec3 result = (dir * dt) + lineseg.start;
output = result;
float AfterStart = (result - lineseg.start).Dot(dir);
float BeforeEnd = -(result - lineseg.end).Dot(dir);
float Within = (float)fsel(AfterStart, BeforeEnd, AfterStart);
if (outT)
{
*outT = dt;
}
return Within >= 0.0f;
}
//----------------------------------------------------------------------------------
// Ray_AABB
//
// just ONE intersection point is calculated, and thats the entry point -
// Lineseg and AABB are assumed to be in the same space
//
//--- 0x00 = no intersection (output undefined) --------------------------
//--- 0x01 = intersection (intersection point in output) --------------
//--- 0x02 = start of Lineseg is inside the AABB (ls.start is output)
//----------------------------------------------------------------------------------
inline uint8 Ray_AABB(const Ray& ray, const AABB& aabb, Vec3& output1)
{
uint8 cflags;
float cosine;
Vec3 cut;
//--------------------------------------------------------------------------------------
//---- check if "ray.origin" is inside of AABB ---------------------------
//--------------------------------------------------------------------------------------
cflags = (ray.origin.x >= aabb.min.x) << 0;
cflags |= (ray.origin.x <= aabb.max.x) << 1;
cflags |= (ray.origin.y >= aabb.min.y) << 2;
cflags |= (ray.origin.y <= aabb.max.y) << 3;
cflags |= (ray.origin.z >= aabb.min.z) << 4;
cflags |= (ray.origin.z <= aabb.max.z) << 5;
if (cflags == 0x3f)
{
output1 = ray.origin;
return 0x02;
}
//--------------------------------------------------------------------------------------
//---- check intersection with planes ------------------------------
//--------------------------------------------------------------------------------------
for (int i = 0; i < 3; i++)
{
if ((ray.direction[i] > 0) && (ray.origin[i] < aabb.min[i]))
{
cosine = (-ray.origin[i] + aabb.min[i]) / ray.direction[i];
cut[i] = aabb.min[i];
cut[incm3(i)] = ray.origin[incm3(i)] + (ray.direction[incm3(i)] * cosine);
cut[decm3(i)] = ray.origin[decm3(i)] + (ray.direction[decm3(i)] * cosine);
if ((cut[incm3(i)] > aabb.min[incm3(i)]) && (cut[incm3(i)] < aabb.max[incm3(i)]) && (cut[decm3(i)] > aabb.min[decm3(i)]) && (cut[decm3(i)] < aabb.max[decm3(i)]))
{
output1 = cut;
return 0x01;
}
}
if ((ray.direction[i] < 0) && (ray.origin[i] > aabb.max[i]))
{
cosine = (+ray.origin[i] - aabb.max[i]) / ray.direction[i];
cut[i] = aabb.max[i];
cut[incm3(i)] = ray.origin[incm3(i)] - (ray.direction[incm3(i)] * cosine);
cut[decm3(i)] = ray.origin[decm3(i)] - (ray.direction[decm3(i)] * cosine);
if ((cut[incm3(i)] > aabb.min[incm3(i)]) && (cut[incm3(i)] < aabb.max[incm3(i)]) && (cut[decm3(i)] > aabb.min[decm3(i)]) && (cut[decm3(i)] < aabb.max[decm3(i)]))
{
output1 = cut;
return 0x01;
}
}
}
return 0x00;//no intersection
}
//----------------------------------------------------------------------------------
// Ray_OBB
//
// just ONE intersection point is calculated, and thats the entry point -
// Lineseg and OBB are assumed to be in the same space
//
//--- 0x00 = no intersection (output undefined) ----
//--- 0x01 = intersection (intersection point in output) --------------
//--- 0x02 = start of Lineseg is inside the OBB (ls.start is output)
//----------------------------------------------------------------------------------
inline uint8 Ray_OBB(const Ray& ray, const Vec3& pos, const OBB& obb, Vec3& output1)
{
AABB aabb(obb.c - obb.h, obb.c + obb.h);
Ray aray((ray.origin - pos) * obb.m33, ray.direction * obb.m33);
uint8 cflags;
float cosine;
Vec3 cut;
//--------------------------------------------------------------------------------------
//---- check if "aray.origin" is inside of AABB ---------------------------
//--------------------------------------------------------------------------------------
cflags = (aray.origin.x > aabb.min.x) << 0;
cflags |= (aray.origin.x < aabb.max.x) << 1;
cflags |= (aray.origin.y > aabb.min.y) << 2;
cflags |= (aray.origin.y < aabb.max.y) << 3;
cflags |= (aray.origin.z > aabb.min.z) << 4;
cflags |= (aray.origin.z < aabb.max.z) << 5;
if (cflags == 0x3f)
{
output1 = aray.origin;
return 0x02;
}
//--------------------------------------------------------------------------------------
//---- check intersection with planes ------------------------------
//--------------------------------------------------------------------------------------
for (int i = 0; i < 3; i++)
{
if ((aray.direction[i] > 0) && (aray.origin[i] < aabb.min[i]))
{
cosine = (-aray.origin[i] + aabb.min[i]) / aray.direction[i];
cut[i] = aabb.min[i];
cut[incm3(i)] = aray.origin[incm3(i)] + (aray.direction[incm3(i)] * cosine);
cut[decm3(i)] = aray.origin[decm3(i)] + (aray.direction[decm3(i)] * cosine);
if ((cut[incm3(i)] > aabb.min[incm3(i)]) && (cut[incm3(i)] < aabb.max[incm3(i)]) && (cut[decm3(i)] > aabb.min[decm3(i)]) && (cut[decm3(i)] < aabb.max[decm3(i)]))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
if ((aray.direction[i] < 0) && (aray.origin[i] > aabb.max[i]))
{
cosine = (+aray.origin[i] - aabb.max[i]) / aray.direction[i];
cut[i] = aabb.max[i];
cut[incm3(i)] = aray.origin[incm3(i)] - (aray.direction[incm3(i)] * cosine);
cut[decm3(i)] = aray.origin[decm3(i)] - (aray.direction[decm3(i)] * cosine);
if ((cut[incm3(i)] > aabb.min[incm3(i)]) && (cut[incm3(i)] < aabb.max[incm3(i)]) && (cut[decm3(i)] > aabb.min[decm3(i)]) && (cut[decm3(i)] < aabb.max[decm3(i)]))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
}
return 0x00;//no intersection
}
//----------------------------------------------------------------------------------
// Lineseg_AABB
//
// just ONE intersection point is calculated, and thats the entry point -
// Lineseg and AABB are assumed to be in the same space
//
//--- 0x00 = no intersection (output undefined) --------------------------
//--- 0x01 = intersection (intersection point in output) --------------
//--- 0x02 = start of Lineseg is inside the AABB (ls.start is output)
//----------------------------------------------------------------------------------
inline uint8 Lineseg_AABB(const Lineseg& ls, const AABB& aabb, Vec3& output1)
{
uint8 cflags;
float cosine;
Vec3 cut;
Vec3 lnormal = (ls.start - ls.end).GetNormalized();
//--------------------------------------------------------------------------------------
//---- check if "ls.start" is inside of AABB ---------------------------
//--------------------------------------------------------------------------------------
cflags = (ls.start.x > aabb.min.x) << 0;
cflags |= (ls.start.x < aabb.max.x) << 1;
cflags |= (ls.start.y > aabb.min.y) << 2;
cflags |= (ls.start.y < aabb.max.y) << 3;
cflags |= (ls.start.z > aabb.min.z) << 4;
cflags |= (ls.start.z < aabb.max.z) << 5;
if (cflags == 0x3f)
{
//ls.start is inside of aabb
output1 = ls.start;
return 0x02;
}
//--------------------------------------------------------------------------------------
//---- check intersection with x-planes ------------------------------
//--------------------------------------------------------------------------------------
if (lnormal.x)
{
if ((ls.start.x < aabb.min.x) && (ls.end.x > aabb.min.x))
{
cosine = (-ls.start.x + (+aabb.min.x)) / lnormal.x;
cut(aabb.min.x, ls.start.y + (lnormal.y * cosine), ls.start.z + (lnormal.z * cosine));
//check if cut-point is inside YZ-plane border
if ((cut.y > aabb.min.y) && (cut.y < aabb.max.y) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = cut;
return 0x01;
}
}
if ((ls.start.x > aabb.max.x) && (ls.end.x < aabb.max.x))
{
cosine = (+ls.start.x + (-aabb.max.x)) / lnormal.x;
cut(aabb.max.x, ls.start.y - (lnormal.y * cosine), ls.start.z - (lnormal.z * cosine));
//check if cut-point is inside YZ-plane border
if ((cut.y > aabb.min.y) && (cut.y < aabb.max.y) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = cut;
return 0x01;
}
}
}
//--------------------------------------------------------------------------------------
//---- check intersection with z-planes ------------------------------
//--------------------------------------------------------------------------------------
if (lnormal.z)
{
if ((ls.start.z < aabb.min.z) && (ls.end.z > aabb.min.z))
{
cosine = (-ls.start.z + (+aabb.min.z)) / lnormal.z;
cut(ls.start.x + (lnormal.x * cosine), ls.start.y + (lnormal.y * cosine), aabb.min.z);
//check if cut-point is inside XY-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.y > aabb.min.y) && (cut.y < aabb.max.y))
{
output1 = cut;
return 0x01;
}
}
if ((ls.start.z > aabb.max.z) && (ls.end.z < aabb.max.z))
{
cosine = (+ls.start.z + (-aabb.max.z)) / lnormal.z;
cut(ls.start.x - (lnormal.x * cosine), ls.start.y - (lnormal.y * cosine), aabb.max.z);
//check if cut-point is inside XY-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.y > aabb.min.y) && (cut.y < aabb.max.y))
{
output1 = cut;
return 0x01;
}
}
}
//--------------------------------------------------------------------------------------
//---- check intersection with y-planes ------------------------------
//--------------------------------------------------------------------------------------
if (lnormal.y)
{
if ((ls.start.y < aabb.min.y) && (ls.end.y > aabb.min.y))
{
cosine = (-ls.start.y + (+aabb.min.y)) / lnormal.y;
cut(ls.start.x + (lnormal.x * cosine), aabb.min.y, ls.start.z + (lnormal.z * cosine));
//check if cut-point is inside XZ-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = cut;
return 0x01;
}
}
if ((ls.start.y > aabb.max.y) && (ls.end.y < aabb.max.y))
{
cosine = (+ls.start.y + (-aabb.max.y)) / lnormal.y;
cut(ls.start.x - (lnormal.x * cosine), aabb.max.y, ls.start.z - (lnormal.z * cosine));
//check if cut-point is inside XZ-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = cut;
return 0x01;
}
}
}
//no intersection
return 0x00;
}
//----------------------------------------------------------------------------------
// Lineseg_OBB
//
// just ONE intersection point is calculated, and thats the entry point -
// Lineseg and OBB are assumed to be in the same space
//
//--- 0x00 = no intersection (output undefined) --------------------------
//--- 0x01 = intersection (intersection point in output) --------------
//--- 0x02 = start of Lineseg is inside the OBB (ls.start is output)
//----------------------------------------------------------------------------------
inline uint8 Lineseg_OBB(const Lineseg& lseg, const Vec3& pos, const OBB& obb, Vec3& output1)
{
AABB aabb(obb.c - obb.h, obb.c + obb.h);
Lineseg ls((lseg.start - pos) * obb.m33, (lseg.end - pos) * obb.m33);
uint8 cflags;
float cosine;
Vec3 cut;
Vec3 lnormal = (ls.start - ls.end).GetNormalized();
//--------------------------------------------------------------------------------------
//---- check if "ls.start" is inside of AABB ---------------------------
//--------------------------------------------------------------------------------------
cflags = (ls.start.x > aabb.min.x) << 0;
cflags |= (ls.start.x < aabb.max.x) << 1;
cflags |= (ls.start.y > aabb.min.y) << 2;
cflags |= (ls.start.y < aabb.max.y) << 3;
cflags |= (ls.start.z > aabb.min.z) << 4;
cflags |= (ls.start.z < aabb.max.z) << 5;
if (cflags == 0x3f)
{
//ls.start is inside of aabb
output1 = obb.m33 * ls.start + pos;
return 0x02;
}
//--------------------------------------------------------------------------------------
//---- check intersection with x-planes ------------------------------
//--------------------------------------------------------------------------------------
if (lnormal.x)
{
if ((ls.start.x < aabb.min.x) && (ls.end.x > aabb.min.x))
{
cosine = (-ls.start.x + (+aabb.min.x)) / lnormal.x;
cut(aabb.min.x, ls.start.y + (lnormal.y * cosine), ls.start.z + (lnormal.z * cosine));
//check if cut-point is inside YZ-plane border
if ((cut.y > aabb.min.y) && (cut.y < aabb.max.y) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
if ((ls.start.x > aabb.max.x) && (ls.end.x < aabb.max.x))
{
cosine = (+ls.start.x + (-aabb.max.x)) / lnormal.x;
cut(aabb.max.x, ls.start.y - (lnormal.y * cosine), ls.start.z - (lnormal.z * cosine));
//check if cut-point is inside YZ-plane border
if ((cut.y > aabb.min.y) && (cut.y < aabb.max.y) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
}
//--------------------------------------------------------------------------------------
//---- check intersection with z-planes ------------------------------
//--------------------------------------------------------------------------------------
if (lnormal.z)
{
if ((ls.start.z < aabb.min.z) && (ls.end.z > aabb.min.z))
{
cosine = (-ls.start.z + (+aabb.min.z)) / lnormal.z;
cut(ls.start.x + (lnormal.x * cosine), ls.start.y + (lnormal.y * cosine), aabb.min.z);
//check if cut-point is inside XY-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.y > aabb.min.y) && (cut.y < aabb.max.y))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
if ((ls.start.z > aabb.max.z) && (ls.end.z < aabb.max.z))
{
cosine = (+ls.start.z + (-aabb.max.z)) / lnormal.z;
cut(ls.start.x - (lnormal.x * cosine), ls.start.y - (lnormal.y * cosine), aabb.max.z);
//check if cut-point is inside XY-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.y > aabb.min.y) && (cut.y < aabb.max.y))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
}
//--------------------------------------------------------------------------------------
//---- check intersection with y-planes ------------------------------
//--------------------------------------------------------------------------------------
if (lnormal.y)
{
if ((ls.start.y < aabb.min.y) && (ls.end.y > aabb.min.y))
{
cosine = (-ls.start.y + (+aabb.min.y)) / lnormal.y;
cut(ls.start.x + (lnormal.x * cosine), aabb.min.y, ls.start.z + (lnormal.z * cosine));
//check if cut-point is inside XZ-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
if ((ls.start.y > aabb.max.y) && (ls.end.y < aabb.max.y))
{
cosine = (+ls.start.y + (-aabb.max.y)) / lnormal.y;
cut(ls.start.x - (lnormal.x * cosine), aabb.max.y, ls.start.z - (lnormal.z * cosine));
//check if cut-point is inside XZ-plane border
if ((cut.x > aabb.min.x) && (cut.x < aabb.max.x) && (cut.z > aabb.min.z) && (cut.z < aabb.max.z))
{
output1 = obb.m33 * cut + pos;
return 0x01;
}
}
}
//no intersection
return 0x00;
}
//----------------------------------------------------------------------------------
//--- 0x00 = no intersection --------------------------
//--- 0x01 = not possible --
//--- 0x02 = not possible --
//--- 0x03 = two intersection, lineseg has ENTRY and EXIT point --
//----------------------------------------------------------------------------------
inline unsigned char Line_Sphere(const Line& line, const ::Sphere& s, Vec3& i0, Vec3& i1)
{
Vec3 end = line.pointonline + line.direction;
float a = line.direction | line.direction;
float b = (line.direction | (line.pointonline - s.center)) * 2.0f;
float c = ((line.pointonline - s.center) | (line.pointonline - s.center)) - (s.radius * s.radius);
float desc = (b * b) - (4 * a * c);
unsigned char intersection = 0;
if (desc >= 0.0f)
{
float lamba0 = (-b - sqrt_tpl(desc)) / (2.0f * a);
//_stprintf(d3dApp.token,"lamba0: %20.12f",lamba0);
//d3dApp.m_pFont->DrawText( 2, d3dApp.PrintY, D3DCOLOR_ARGB(255,255,255,0), d3dApp.token ); d3dApp.PrintY+=20;
i0 = line.pointonline + ((end - line.pointonline) * lamba0);
intersection = 1;
float lamba1 = (-b + sqrt_tpl(desc)) / (2.0f * a);
//_stprintf(d3dApp.token,"lamba1: %20.12f",lamba1);
//d3dApp.m_pFont->DrawText( 2, d3dApp.PrintY, D3DCOLOR_ARGB(255,255,255,0), d3dApp.token ); d3dApp.PrintY+=20;
i1 = line.pointonline + ((end - line.pointonline) * lamba1);
intersection |= 2;
}
return intersection;
}
//----------------------------------------------------------------------------------
//--- 0x00 = no intersection --------------------------
//--- 0x01 = not possible --
//--- 0x02 = one intersection, lineseg has just an EXIT point but no ENTRY point (ls.start is inside the sphere) --
//--- 0x03 = two intersection, lineseg has ENTRY and EXIT point --
//----------------------------------------------------------------------------------
inline unsigned char Ray_Sphere(const Ray& ray, const ::Sphere& s, Vec3& i0, Vec3& i1)
{
Vec3 end = ray.origin + ray.direction;
float a = ray.direction | ray.direction;
float b = (ray.direction | (ray.origin - s.center)) * 2.0f;
float c = ((ray.origin - s.center) | (ray.origin - s.center)) - (s.radius * s.radius);
float desc = (b * b) - (4 * a * c);
unsigned char intersection = 0;
if (desc >= 0.0f)
{
float lamba0 = (-b - sqrt_tpl(desc)) / (2.0f * a);
// _stprintf(d3dApp.token,"lamba0: %20.12f",lamba0);
// d3dApp.m_pFont->DrawText( 2, d3dApp.PrintY, D3DCOLOR_ARGB(255,255,255,0), d3dApp.token ); d3dApp.PrintY+=20;
if (lamba0 > 0.0f)
{
i0 = ray.origin + ((end - ray.origin) * lamba0);
intersection = 1;
}
float lamba1 = (-b + sqrt_tpl(desc)) / (2.0f * a);
// _stprintf(d3dApp.token,"lamba1: %20.12f",lamba1);
// d3dApp.m_pFont->DrawText( 2, d3dApp.PrintY, D3DCOLOR_ARGB(255,255,255,0), d3dApp.token ); d3dApp.PrintY+=20;
if (lamba1 > 0.0f)
{
i1 = ray.origin + ((end - ray.origin) * lamba1);
intersection |= 2;
}
}
return intersection;
}
inline bool Ray_SphereFirst(const Ray& ray, const ::Sphere& s, Vec3& intPoint)
{
Vec3 p2;
unsigned char res = Ray_Sphere(ray, s, intPoint, p2);
if (res == 2)
{
intPoint = p2;
}
if (res > 1)
{
return true;
}
return false;
}
//----------------------------------------------------------------------------------
//--- 0x00 = no intersection --------------------------
//--- 0x01 = one intersection, lineseg has just an ENTRY point but no EXIT point (ls.end is inside the sphere) --
//--- 0x02 = one intersection, lineseg has just an EXIT point but no ENTRY point (ls.start is inside the sphere) --
//--- 0x03 = two intersection, lineseg has ENTRY and EXIT point --
//----------------------------------------------------------------------------------
inline unsigned char Lineseg_Sphere(const Lineseg& ls, const ::Sphere& s, Vec3& i0, Vec3& i1)
{
Vec3 dir = (ls.end - ls.start);
float a = dir | dir;
if (a == 0.0f)
{
return 0;
}
float b = (dir | (ls.start - s.center)) * 2.0f;
float c = ((ls.start - s.center) | (ls.start - s.center)) - (s.radius * s.radius);
float desc = (b * b) - (4 * a * c);
unsigned char intersection = 0;
if (desc >= 0.0f)
{
float lamba0 = (-b - sqrt_tpl(desc)) / (2.0f * a);
if (lamba0 > 0.0f)
{
i0 = ls.start + ((ls.end - ls.start) * lamba0);
//skip, if 1st cutting-point is "in front" of ls.end
if (((i0 - ls.end) | dir) > 0)
{
return 0;
}
intersection = 0x01;
}
float lamba1 = (-b + sqrt_tpl(desc)) / (2.0f * a);
if (lamba1 > 0.0f)
{
i1 = ls.start + ((ls.end - ls.start) * lamba1);
//skip, if 2nd cutting-point is "in front" of ls.end (=ls.end is inside sphere)
if (((i1 - ls.end) | dir) > 0)
{
return intersection;
}
intersection |= 0x02;
}
}
return intersection;
}
inline bool Lineseg_SphereFirst(const Lineseg& lineseg, const ::Sphere& s, Vec3& intPoint)
{
Vec3 p2;
uint8 res = Lineseg_Sphere(lineseg, s, intPoint, p2);
if (res == 2)
{
intPoint = p2;
}
if (res > 1)
{
return true;
}
return false;
}
}; //CIntersect
#endif // CRYINCLUDE_CRYCOMMON_CRY_GEOINTERSECT_H