You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/Atom/Feature/Common/Code/Source/DiffuseGlobalIllumination/DiffuseProbeGridVisualizati...

301 lines
15 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project.
* For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#include <Atom/RHI/CommandList.h>
#include <Atom/RHI/DispatchRaysItem.h>
#include <Atom/RHI/Factory.h>
#include <Atom/RHI/RHISystemInterface.h>
#include <Atom/RPI.Public/RenderPipeline.h>
#include <Atom/RPI.Public/Scene.h>
#include <Atom/RPI.Public/RPIUtils.h>
#include <Atom/RPI.Public/View.h>
#include <Atom_Feature_Traits_Platform.h>
#include <DiffuseGlobalIllumination/DiffuseProbeGridFeatureProcessor.h>
#include <DiffuseGlobalIllumination/DiffuseProbeGridVisualizationRayTracingPass.h>
namespace AZ
{
namespace Render
{
RPI::Ptr<DiffuseProbeGridVisualizationRayTracingPass> DiffuseProbeGridVisualizationRayTracingPass::Create(const RPI::PassDescriptor& descriptor)
{
RPI::Ptr<DiffuseProbeGridVisualizationRayTracingPass> pass = aznew DiffuseProbeGridVisualizationRayTracingPass(descriptor);
return AZStd::move(pass);
}
DiffuseProbeGridVisualizationRayTracingPass::DiffuseProbeGridVisualizationRayTracingPass(const RPI::PassDescriptor& descriptor)
: RPI::RenderPass(descriptor)
{
RHI::Ptr<RHI::Device> device = RHI::RHISystemInterface::Get()->GetDevice();
if (device->GetFeatures().m_rayTracing == false || !AZ_TRAIT_DIFFUSE_GI_PASSES_SUPPORTED)
{
// raytracing or GI is not supported on this platform
SetEnabled(false);
}
}
void DiffuseProbeGridVisualizationRayTracingPass::CreateRayTracingPipelineState()
{
RHI::Ptr<RHI::Device> device = RHI::RHISystemInterface::Get()->GetDevice();
// load the ray tracing shader
// Note: the shader may not be available on all platforms
AZStd::string shaderFilePath = "Shaders/DiffuseGlobalIllumination/DiffuseProbeGridVisualizationRayTracing.azshader";
m_rayTracingShader = RPI::LoadCriticalShader(shaderFilePath);
if (m_rayTracingShader == nullptr)
{
return;
}
auto shaderVariant = m_rayTracingShader->GetVariant(RPI::ShaderAsset::RootShaderVariantStableId);
RHI::PipelineStateDescriptorForRayTracing rayGenerationShaderDescriptor;
shaderVariant.ConfigurePipelineState(rayGenerationShaderDescriptor);
// closest hit shader
AZStd::string closestHitShaderFilePath = "Shaders/DiffuseGlobalIllumination/DiffuseProbeGridVisualizationRayTracingClosestHit.azshader";
m_closestHitShader = RPI::LoadCriticalShader(closestHitShaderFilePath);
auto closestHitShaderVariant = m_closestHitShader->GetVariant(RPI::ShaderAsset::RootShaderVariantStableId);
RHI::PipelineStateDescriptorForRayTracing closestHitShaderDescriptor;
closestHitShaderVariant.ConfigurePipelineState(closestHitShaderDescriptor);
// miss shader
AZStd::string missShaderFilePath = "Shaders/DiffuseGlobalIllumination/DiffuseProbeGridVisualizationRayTracingMiss.azshader";
m_missShader = RPI::LoadCriticalShader(missShaderFilePath);
auto missShaderVariant = m_missShader->GetVariant(RPI::ShaderAsset::RootShaderVariantStableId);
RHI::PipelineStateDescriptorForRayTracing missShaderDescriptor;
missShaderVariant.ConfigurePipelineState(missShaderDescriptor);
// global pipeline state and Srg
m_globalPipelineState = m_rayTracingShader->AcquirePipelineState(rayGenerationShaderDescriptor);
AZ_Assert(m_globalPipelineState, "Failed to acquire ray tracing global pipeline state");
m_globalSrgLayout = m_rayTracingShader->FindShaderResourceGroupLayout(Name{ "RayTracingGlobalSrg" });
AZ_Assert(m_globalSrgLayout != nullptr, "Failed to find RayTracingGlobalSrg layout for shader [%s]", shaderFilePath.c_str());
// build the ray tracing pipeline state descriptor
RHI::RayTracingPipelineStateDescriptor descriptor;
descriptor.Build()
->PipelineState(m_globalPipelineState.get())
->MaxPayloadSize(64)
->MaxAttributeSize(32)
->MaxRecursionDepth(2)
->ShaderLibrary(rayGenerationShaderDescriptor)
->RayGenerationShaderName(AZ::Name("RayGen"))
->ShaderLibrary(missShaderDescriptor)
->MissShaderName(AZ::Name("Miss"))
->ShaderLibrary(closestHitShaderDescriptor)
->ClosestHitShaderName(AZ::Name("ClosestHit"))
->HitGroup(AZ::Name("HitGroup"))
->ClosestHitShaderName(AZ::Name("ClosestHit"));
// create the ray tracing pipeline state object
m_rayTracingPipelineState = RHI::Factory::Get().CreateRayTracingPipelineState();
m_rayTracingPipelineState->Init(*device.get(), &descriptor);
}
bool DiffuseProbeGridVisualizationRayTracingPass::IsEnabled() const
{
if (!RenderPass::IsEnabled())
{
return false;
}
RPI::Scene* scene = m_pipeline->GetScene();
if (!scene)
{
return false;
}
DiffuseProbeGridFeatureProcessor* diffuseProbeGridFeatureProcessor = scene->GetFeatureProcessor<DiffuseProbeGridFeatureProcessor>();
if (diffuseProbeGridFeatureProcessor)
{
for (auto& diffuseProbeGrid : diffuseProbeGridFeatureProcessor->GetVisibleProbeGrids())
{
if (diffuseProbeGrid->GetVisualizationEnabled())
{
return true;
}
}
}
return false;
}
void DiffuseProbeGridVisualizationRayTracingPass::FrameBeginInternal(FramePrepareParams params)
{
RPI::Scene* scene = m_pipeline->GetScene();
DiffuseProbeGridFeatureProcessor* diffuseProbeGridFeatureProcessor = scene->GetFeatureProcessor<DiffuseProbeGridFeatureProcessor>();
if (!m_initialized)
{
CreateRayTracingPipelineState();
m_initialized = true;
}
if (!m_rayTracingShaderTable)
{
RHI::Ptr<RHI::Device> device = RHI::RHISystemInterface::Get()->GetDevice();
RHI::RayTracingBufferPools& rayTracingBufferPools = diffuseProbeGridFeatureProcessor->GetVisualizationBufferPools();
m_rayTracingShaderTable = RHI::Factory::Get().CreateRayTracingShaderTable();
m_rayTracingShaderTable->Init(*device.get(), rayTracingBufferPools);
AZStd::shared_ptr<RHI::RayTracingShaderTableDescriptor> descriptor = AZStd::make_shared<RHI::RayTracingShaderTableDescriptor>();
// build the ray tracing shader table descriptor
descriptor->Build(AZ::Name("RayTracingShaderTable"), m_rayTracingPipelineState)
->RayGenerationRecord(AZ::Name("RayGen"))
->MissRecord(AZ::Name("Miss"))
->HitGroupRecord(AZ::Name("HitGroup"))
;
m_rayTracingShaderTable->Build(descriptor);
}
RenderPass::FrameBeginInternal(params);
}
void DiffuseProbeGridVisualizationRayTracingPass::SetupFrameGraphDependencies(RHI::FrameGraphInterface frameGraph)
{
RenderPass::SetupFrameGraphDependencies(frameGraph);
RPI::Scene* scene = m_pipeline->GetScene();
DiffuseProbeGridFeatureProcessor* diffuseProbeGridFeatureProcessor = scene->GetFeatureProcessor<DiffuseProbeGridFeatureProcessor>();
for (auto& diffuseProbeGrid : diffuseProbeGridFeatureProcessor->GetVisibleProbeGrids())
{
if (!diffuseProbeGrid->GetVisualizationEnabled())
{
continue;
}
// TLAS
{
AZ::RHI::AttachmentId tlasAttachmentId = diffuseProbeGrid->GetProbeVisualizationTlasAttachmentId();
const RHI::Ptr<RHI::Buffer>& visualizationTlasBuffer = diffuseProbeGrid->GetVisualizationTlas()->GetTlasBuffer();
if (visualizationTlasBuffer)
{
if (!frameGraph.GetAttachmentDatabase().IsAttachmentValid(tlasAttachmentId))
{
[[maybe_unused]] RHI::ResultCode result = frameGraph.GetAttachmentDatabase().ImportBuffer(tlasAttachmentId, visualizationTlasBuffer);
AZ_Assert(result == RHI::ResultCode::Success, "Failed to import ray tracing TLAS buffer with error %d", result);
}
uint32_t tlasBufferByteCount = aznumeric_cast<uint32_t>(visualizationTlasBuffer->GetDescriptor().m_byteCount);
RHI::BufferViewDescriptor tlasBufferViewDescriptor = RHI::BufferViewDescriptor::CreateRaw(0, tlasBufferByteCount);
RHI::BufferScopeAttachmentDescriptor desc;
desc.m_attachmentId = tlasAttachmentId;
desc.m_bufferViewDescriptor = tlasBufferViewDescriptor;
desc.m_loadStoreAction.m_loadAction = AZ::RHI::AttachmentLoadAction::Load;
frameGraph.UseShaderAttachment(desc, RHI::ScopeAttachmentAccess::ReadWrite);
}
}
// probe irradiance
{
RHI::ImageScopeAttachmentDescriptor desc;
desc.m_attachmentId = diffuseProbeGrid->GetIrradianceImageAttachmentId();
desc.m_imageViewDescriptor = diffuseProbeGrid->GetRenderData()->m_probeIrradianceImageViewDescriptor;
desc.m_loadStoreAction.m_loadAction = AZ::RHI::AttachmentLoadAction::Load;
frameGraph.UseShaderAttachment(desc, RHI::ScopeAttachmentAccess::Read);
}
// probe distance
{
RHI::ImageScopeAttachmentDescriptor desc;
desc.m_attachmentId = diffuseProbeGrid->GetDistanceImageAttachmentId();
desc.m_imageViewDescriptor = diffuseProbeGrid->GetRenderData()->m_probeDistanceImageViewDescriptor;
desc.m_loadStoreAction.m_loadAction = AZ::RHI::AttachmentLoadAction::Load;
frameGraph.UseShaderAttachment(desc, RHI::ScopeAttachmentAccess::Read);
}
// probe data
{
RHI::ImageScopeAttachmentDescriptor desc;
desc.m_attachmentId = diffuseProbeGrid->GetProbeDataImageAttachmentId();
desc.m_imageViewDescriptor = diffuseProbeGrid->GetRenderData()->m_probeDataImageViewDescriptor;
desc.m_loadStoreAction.m_loadAction = AZ::RHI::AttachmentLoadAction::Load;
frameGraph.UseShaderAttachment(desc, RHI::ScopeAttachmentAccess::Read);
}
}
// retrieve the visualization image size, this will determine the number of rays to cast
RPI::Ptr<RPI::PassAttachment> visualizationImageAttachment = m_ownedAttachments[0];
AZ_Assert(visualizationImageAttachment.get(), "Invalid DiffuseProbeGrid Visualization image");
m_outputAttachmentSize = visualizationImageAttachment->GetTransientImageDescriptor().m_imageDescriptor.m_size;
}
void DiffuseProbeGridVisualizationRayTracingPass::CompileResources([[maybe_unused]] const RHI::FrameGraphCompileContext& context)
{
const RHI::ImageView* outputImageView = context.GetImageView(GetOutputBinding(0).m_attachment->GetAttachmentId());
AZ_Assert(outputImageView, "Failed to retrieve output ImageView");
RPI::Scene* scene = m_pipeline->GetScene();
DiffuseProbeGridFeatureProcessor* diffuseProbeGridFeatureProcessor = scene->GetFeatureProcessor<DiffuseProbeGridFeatureProcessor>();
for (auto& diffuseProbeGrid : diffuseProbeGridFeatureProcessor->GetVisibleProbeGrids())
{
if (!diffuseProbeGrid->GetVisualizationEnabled())
{
continue;
}
// the DiffuseProbeGridVisualization Srg must be updated in the Compile phase in order to successfully bind the ReadWrite shader
// inputs (see line ValidateSetImageView() in ShaderResourceGroupData.cpp)
diffuseProbeGrid->UpdateVisualizationRayTraceSrg(m_rayTracingShader, m_globalSrgLayout, outputImageView);
diffuseProbeGrid->GetVisualizationRayTraceSrg()->Compile();
}
}
void DiffuseProbeGridVisualizationRayTracingPass::BuildCommandListInternal([[maybe_unused]] const RHI::FrameGraphExecuteContext& context)
{
RPI::Scene* scene = m_pipeline->GetScene();
DiffuseProbeGridFeatureProcessor* diffuseProbeGridFeatureProcessor = scene->GetFeatureProcessor<DiffuseProbeGridFeatureProcessor>();
const AZStd::vector<RPI::ViewPtr>& views = m_pipeline->GetViews(RPI::PipelineViewTag{ "MainCamera" });
if (views.empty())
{
return;
}
for (auto& diffuseProbeGrid : diffuseProbeGridFeatureProcessor->GetVisibleProbeGrids())
{
if (!diffuseProbeGrid->GetVisualizationEnabled())
{
continue;
}
const RHI::ShaderResourceGroup* shaderResourceGroups[] = {
diffuseProbeGrid->GetVisualizationRayTraceSrg()->GetRHIShaderResourceGroup(),
views[0]->GetRHIShaderResourceGroup()
};
RHI::DispatchRaysItem dispatchRaysItem;
dispatchRaysItem.m_width = m_outputAttachmentSize.m_width;
dispatchRaysItem.m_height = m_outputAttachmentSize.m_height;
dispatchRaysItem.m_depth = 1;
dispatchRaysItem.m_rayTracingPipelineState = m_rayTracingPipelineState.get();
dispatchRaysItem.m_rayTracingShaderTable = m_rayTracingShaderTable.get();
dispatchRaysItem.m_shaderResourceGroupCount = RHI::ArraySize(shaderResourceGroups);
dispatchRaysItem.m_shaderResourceGroups = shaderResourceGroups;
dispatchRaysItem.m_globalPipelineState = m_globalPipelineState.get();
// submit the DispatchRays item
context.GetCommandList()->Submit(dispatchRaysItem);
}
}
} // namespace RPI
} // namespace AZ