You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/Atom/RHI/Metal/Code/Source/RHI.Builders/ShaderPlatformInterface.cpp

852 lines
44 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project.
* For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#include <RHI.Builders/ShaderPlatformInterface.h>
#include <AssetBuilderSDK/AssetBuilderSDK.h>
#include <Atom/RHI.Edit/Utils.h>
#include <Atom/RHI.Reflect/Metal/Base.h>
#include <Atom/RHI.Reflect/Metal/PipelineLayoutDescriptor.h>
#include <Atom/RHI.Reflect/Metal/ShaderStageFunction.h>
#include <AzFramework/StringFunc/StringFunc.h>
namespace AZ
{
namespace Metal
{
static const char* MetalShaderPlatformName = "MetalShaderPlatform";
static const char* MacPlatformShaderHeader = "Builders/ShaderHeaders/Platform/Mac/Metal/PlatformHeader.hlsli";
static const char* IosPlatformShaderHeader = "Builders/ShaderHeaders/Platform/iOS/Metal/PlatformHeader.hlsli";
static const char* MacAzslShaderHeader = "Builders/ShaderHeaders/Platform/Mac/Metal/AzslcHeader.azsli";
static const char* IosAzslShaderHeader = "Builders/ShaderHeaders/Platform/iOS/Metal/AzslcHeader.azsli";
ShaderPlatformInterface::ShaderPlatformInterface(uint32_t apiUniqueIndex)
: RHI::ShaderPlatformInterface(apiUniqueIndex)
{
// Initialize to nullptr so we can detect whether BuildPipelineLayoutDescriptor
// was called before CompilePlatformInternal or not.
// BuildPipelineLayoutDescriptor should be called at least once
// before CompilePlatformInternal.
auto it = m_srgLayouts.begin();
while (it != m_srgLayouts.end())
{
*it = nullptr;
}
}
RHI::APIType ShaderPlatformInterface::GetAPIType() const
{
return Metal::RHIType;
}
AZ::Name ShaderPlatformInterface::GetAPIName() const
{
return m_apiName;
}
RHI::Ptr <RHI::PipelineLayoutDescriptor> ShaderPlatformInterface::CreatePipelineLayoutDescriptor()
{
return AZ::Metal::PipelineLayoutDescriptor::Create();
}
bool ShaderPlatformInterface::BuildPipelineLayoutDescriptor(
RHI::Ptr<RHI::PipelineLayoutDescriptor> pipelineLayoutDescriptor,
const ShaderResourceGroupInfoList& srgInfoList,
const RootConstantsInfo& rootConstantsInfo,
const RHI::ShaderCompilerArguments& shaderCompilerArguments)
{
AZ::Metal::PipelineLayoutDescriptor* metalDescriptor = azrtti_cast<AZ::Metal::PipelineLayoutDescriptor*>(pipelineLayoutDescriptor.get());
AZ_Assert(metalDescriptor, "PipelineLayoutDescriptor should have been created by now");
const uint32_t groupLayoutCount = static_cast<uint32_t>(srgInfoList.size());
AZ_Assert(groupLayoutCount <= RHI::Limits::Pipeline::ShaderResourceGroupCountMax, "Exceeded ShaderResourceGroupLayout count limit.");
// Slot to index mapping
AZ::Metal::SlotToIndexTable slotToIndexTable;
AZ::Metal::IndexToSlotTable indexToSlotTable;
slotToIndexTable.fill(static_cast<uint8_t>(RHI::Limits::Pipeline::ShaderResourceGroupCountMax));
indexToSlotTable.resize(groupLayoutCount);
m_srgLayouts.clear(); // In case we are building pipeline layout descriptor for multiple shaders.
m_srgLayouts.resize(groupLayoutCount);
RHI::ShaderPlatformInterface::ShaderResourceGroupInfoList sortedSrgInfos = srgInfoList;
//Sort the SRGs to ensure the ones with lowest bindingSlot/SpaceId go at the lowest index in order to honor the frequencyId.
AZStd::sort(sortedSrgInfos.begin(), sortedSrgInfos.end(),
[](const RHI::ShaderPlatformInterface::ShaderResourceGroupInfo& first, const RHI::ShaderPlatformInterface::ShaderResourceGroupInfo& second) -> bool
{
return first.m_layout->GetBindingSlot() < second.m_layout->GetBindingSlot();
});
for (uint32_t groupLayoutIndex = 0; groupLayoutIndex < groupLayoutCount; ++groupLayoutIndex)
{
const auto& srgInfo = sortedSrgInfos[groupLayoutIndex];
const RHI::ShaderResourceGroupLayout& groupLayout = *srgInfo.m_layout;
const uint32_t srgLayoutSlot = groupLayout.GetBindingSlot();
AZ_Assert(srgLayoutSlot <= RHI::Limits::Pipeline::ShaderResourceGroupCountMax, "Cannot exceed the array limit");
slotToIndexTable[srgLayoutSlot] = groupLayoutIndex;
indexToSlotTable[groupLayoutIndex] = srgLayoutSlot;
ShaderResourceGroupVisibility srgVisibility;
for (const auto& resourceBindInfo : srgInfo.m_bindingInfo.m_resourcesRegisterMap)
{
srgVisibility.m_resourcesStageMask.insert({ resourceBindInfo.first, resourceBindInfo.second.m_shaderStageMask });
}
srgVisibility.m_constantDataStageMask = srgInfo.m_bindingInfo.m_constantDataBindingInfo.m_shaderStageMask;
metalDescriptor->AddShaderResourceGroupVisibility(srgVisibility);
//cache the layout in order to fill out unused variables
m_srgLayouts[groupLayoutIndex] = srgInfo.m_layout;
}
if (rootConstantsInfo.m_totalSizeInBytes > 0)
{
metalDescriptor->SetRootConstantBinding(RootConstantBinding{ rootConstantsInfo.m_registerId, rootConstantsInfo.m_spaceId });
}
metalDescriptor->SetBindingTables(slotToIndexTable, indexToSlotTable);
return metalDescriptor->Finalize() == RHI::ResultCode::Success;
}
RHI::Ptr<RHI::ShaderStageFunction> ShaderPlatformInterface::CreateShaderStageFunction(const StageDescriptor& stageDescriptor)
{
RHI::Ptr<ShaderStageFunction> newShaderStageFunction = ShaderStageFunction::Create(RHI::ToRHIShaderStage(stageDescriptor.m_stageType));
const Metal::ShaderSourceCode& sourceCode = stageDescriptor.m_sourceCode;
//Metal sourceCode is great for debugging but it is not needed as we are also packing the bytecode. This
//can be removed for more optimized shader assets
newShaderStageFunction->SetSourceCode(sourceCode);
const Metal::ShaderByteCode& byteCode = stageDescriptor.m_byteCode;
const AZStd::string& entryFunctionName = stageDescriptor.m_entryFunctionName;
newShaderStageFunction->SetByteCode(byteCode);
newShaderStageFunction->SetEntryFunctionName(entryFunctionName);
newShaderStageFunction->Finalize();
return newShaderStageFunction;
}
bool ShaderPlatformInterface::IsShaderStageForRaster(RHI::ShaderHardwareStage shaderStageType) const
{
bool hasRasterProgram = false;
hasRasterProgram |= shaderStageType == RHI::ShaderHardwareStage::Vertex;
hasRasterProgram |= shaderStageType == RHI::ShaderHardwareStage::Fragment;
return hasRasterProgram;
}
bool ShaderPlatformInterface::IsShaderStageForCompute(RHI::ShaderHardwareStage shaderStageType) const
{
return (shaderStageType == RHI::ShaderHardwareStage::Compute);
}
bool ShaderPlatformInterface::IsShaderStageForRayTracing(RHI::ShaderHardwareStage shaderStageType) const
{
return (shaderStageType == RHI::ShaderHardwareStage::RayTracing);
}
AZStd::string ShaderPlatformInterface::GetAzslCompilerParameters(const RHI::ShaderCompilerArguments& shaderCompilerArguments) const
{
// Note: all platforms use DirectX packing rules. We enable vk namespace as well to allow
// for vk syntax to carry through from dxc to spirv-cross.
return shaderCompilerArguments.MakeAdditionalAzslcCommandLineString() +
" --use-spaces --unique-idx --namespace=mt,vk --root-const=128 --pad-root-const";
}
AZStd::string ShaderPlatformInterface::GetAzslCompilerWarningParameters(const RHI::ShaderCompilerArguments& shaderCompilerArguments) const
{
return shaderCompilerArguments.MakeAdditionalAzslcWarningCommandLineString();
}
bool ShaderPlatformInterface::BuildHasDebugInfo(const RHI::ShaderCompilerArguments& shaderCompilerArguments) const
{
return shaderCompilerArguments.m_generateDebugInfo;
}
const char* ShaderPlatformInterface::GetAzslHeader(const AssetBuilderSDK::PlatformInfo& platform) const
{
if(platform.HasTag("mobile"))
{
return IosAzslShaderHeader;
}
else
{
return MacAzslShaderHeader;
}
}
bool ShaderPlatformInterface::CompilePlatformInternal(
const AssetBuilderSDK::PlatformInfo& platform,
const AZStd::string& shaderSourcePath,
const AZStd::string& functionName,
RHI::ShaderHardwareStage shaderStage,
const AZStd::string& tempFolderPath,
StageDescriptor& outputDescriptor,
const RHI::ShaderCompilerArguments& shaderCompilerArguments) const
{
for ([[maybe_unused]] auto srgLayout : m_srgLayouts)
{
AZ_Assert(srgLayout != nullptr, "Most likely BuildPipelineLayoutDescriptor() was not called!");
}
AZStd::vector<char> shaderSourceCode;
AZStd::vector<uint8_t> shaderByteCode;
// Compile HLSL shader to METAL source code
bool compiledSucessfully = CompileHLSLShader(
shaderSourcePath, // shader source filename
tempFolderPath, // AP temp folder for the job
functionName, // name of function that is the entry point
shaderStage, // shader stage (vertex shader, pixel shader, ...)
shaderCompilerArguments,
shaderSourceCode, // cross-compiled shader output
shaderByteCode, // compiled byte code
platform, // target platform
outputDescriptor.m_byProducts); // debug objects
if (!compiledSucessfully)
{
AZ_Error(MetalShaderPlatformName, false, "Failed to cross-compile HLSL shader to Metal");
return false;
}
if (shaderSourceCode.size() > 0)
{
outputDescriptor.m_stageType = shaderStage;
outputDescriptor.m_sourceCode = AZStd::move(shaderSourceCode);
outputDescriptor.m_byteCode = AZStd::move(shaderByteCode);
outputDescriptor.m_entryFunctionName = AZStd::move(functionName);
}
else
{
AZ_Error(MetalShaderPlatformName, false, "Compiled shader for %s is invalid", shaderSourcePath.c_str());
return false;
}
return true;
}
/* We cross compile to metal SL by going through following transformations
* DXC(HLSL)-->SPIR-V Cross(SPIR-V)-->MSL
*/
bool ShaderPlatformInterface::CompileHLSLShader(
const AZStd::string& shaderSourceFile,
const AZStd::string& tempFolder,
const AZStd::string& entryPoint,
const RHI::ShaderHardwareStage shaderType,
const RHI::ShaderCompilerArguments& shaderCompilerArguments,
AZStd::vector<char>& sourceMetalShader,
AZStd::vector<uint8_t>& compiledByteCode,
const AssetBuilderSDK::PlatformInfo& platform,
ByProducts& byProducts) const
{
// Shader compiler executable
static const char* dxcRelativePath = "Builders/DirectXShaderCompiler/bin/dxc";
// Output file
AZStd::string shaderMSLOutputFile = RHI::BuildFileNameWithExtension(shaderSourceFile, tempFolder, "metal");
// Stage profile name parameter
const AZStd::string shaderModelVersion = "6_2";
const AZStd::unordered_map<RHI::ShaderHardwareStage, AZStd::string> stageToProfileName =
{
{RHI::ShaderHardwareStage::Vertex, "vs_" + shaderModelVersion},
{RHI::ShaderHardwareStage::Fragment, "ps_" + shaderModelVersion},
{RHI::ShaderHardwareStage::Compute, "cs_" + shaderModelVersion}
};
auto profileIt = stageToProfileName.find(shaderType);
if (profileIt == stageToProfileName.end())
{
AZ_Error(MetalShaderPlatformName, false, "Unsupported shader stage");
return false;
}
// For this approach we will be doing hlsl->spirv(through dxc) and spirv->metalSL(through spirv cross)
// Output spirv file
AZStd::string shaderSpirvOutputFile = RHI::BuildFileNameWithExtension(shaderSourceFile, tempFolder, "spirv");
// Compilation parameters
AZStd::string params = shaderCompilerArguments.MakeAdditionalDxcCommandLineString();
params += " -spirv"; // Generate SPIRV shader
// Enable half precision types when shader model >= 6.2
int shaderModelMajor = 0;
int shaderModelMinor = 0;
[[maybe_unused]] int numValuesRead = azsscanf(shaderModelVersion.c_str(), "%d_%d", &shaderModelMajor, &shaderModelMinor);
AZ_Assert(numValuesRead == 2, "Unknown shader model version format");
if (shaderModelMajor >= 6 && shaderModelMinor >= 2)
{
params += " -enable-16bit-types";
}
StringFunc::TrimWhiteSpace(params, true, false);
AZStd::string prependFile;
if(platform.HasTag("mobile"))
{
prependFile = IosPlatformShaderHeader;
}
else
{
prependFile = MacPlatformShaderHeader;
}
RHI::PrependArguments args;
args.m_sourceFile = shaderSourceFile.c_str();
args.m_prependFile = prependFile.c_str();
args.m_destinationFolder = tempFolder.c_str();
const auto dxcInputFile = RHI::PrependFile(args);
if (BuildHasDebugInfo(shaderCompilerArguments))
{
// dump intermediate "true final HLSL" file (shadername.metal.shadersource.prepend)
byProducts.m_intermediatePaths.insert(dxcInputFile);
}
// 1.entry 3.config 5.hlsl-in
// | 2.SM | 4.output |
// | | | | |
AZStd::string dxcCommandOptions = AZStd::string::format("-E %s -T %s %s -Fo \"%s\" \"%s\"",
entryPoint.c_str(), // 1
profileIt->second.c_str(), // 2
params.c_str(), // 3
shaderSpirvOutputFile.c_str(), // 4
dxcInputFile.c_str()); // 5
// Run dxc Compiler
if (!RHI::ExecuteShaderCompiler(dxcRelativePath, dxcCommandOptions, shaderSourceFile, "DXC"))
{
AZ_Error(MetalShaderPlatformName, false, "DXC failed to create the spirv file");
return false;
}
if (BuildHasDebugInfo(shaderCompilerArguments))
{
byProducts.m_intermediatePaths.insert(shaderSpirvOutputFile); // the spirv spit by DXC
}
IO::FileIOStream spirvOutFileStream(shaderSpirvOutputFile.data(), AZ::IO::OpenMode::ModeRead | AZ::IO::OpenMode::ModeBinary);
if (!spirvOutFileStream.IsOpen())
{
AZ_Error(MetalShaderPlatformName, false, "Failed because the shader file \"%s\" could not be opened", shaderSpirvOutputFile.data());
return false;
}
if (!spirvOutFileStream.CanRead())
{
AZ_Error(MetalShaderPlatformName, false, "Failed because the shader file \"%s\" could not be read", shaderSpirvOutputFile.data());
spirvOutFileStream.Close();
return false;
}
// spirv cross compiler executable
static const char* spirvCrossRelativePath = "Builders/SPIRVCross/spirv-cross";
AZStd::string spirvCrossCommandOptions = AZStd::string::format("--msl --msl-version 20100 --msl-argument-buffers --msl-decoration-binding --msl-texture-buffer-native --output \"%s\" \"%s\"", shaderMSLOutputFile.c_str(), shaderSpirvOutputFile.c_str());
// Run spirv cross
if (!RHI::ExecuteShaderCompiler(spirvCrossRelativePath, spirvCrossCommandOptions, shaderSpirvOutputFile, "SpirvCross"))
{
AZ_Error(MetalShaderPlatformName, false, "SPIRV-Cross failed to cross compil to metal source.");
spirvOutFileStream.Close();
return false;
}
spirvOutFileStream.Close();
IO::FileIOStream outFileStream(shaderMSLOutputFile.data(), IO::OpenMode::ModeRead);
bool finalizeShaderResult = UpdateCompiledShader(outFileStream, MetalShaderPlatformName, shaderMSLOutputFile.data(), sourceMetalShader);
AZ_Assert(finalizeShaderResult, "Final compiled shader was not created. Check if %s was created", shaderMSLOutputFile.c_str());
if (BuildHasDebugInfo(shaderCompilerArguments))
{
byProducts.m_intermediatePaths.emplace(AZStd::move(shaderMSLOutputFile)); // .msl metal out of sv-cross
}
bool compileMetalSL = CreateMetalLib(MetalShaderPlatformName, shaderSourceFile, tempFolder, compiledByteCode, sourceMetalShader, platform);
if (!compileMetalSL)
{
AZ_Error(MetalShaderPlatformName, false, "Failed to create bytecode");
return false;
}
return finalizeShaderResult;
}
bool ShaderPlatformInterface::UpdateCompiledShader(AZ::IO::FileIOStream& fileStream, const char* platformName, const char* fileName, AZStd::vector<char>& compiledShader) const
{
if (!fileStream.IsOpen())
{
AZ_Error(platformName, false, "Failed because the shader file \"%s\" could not be opened", fileName);
return false;
}
if (!fileStream.CanRead())
{
AZ_Error(platformName, false, "Failed because the shader file \"%s\" could not be read", fileName);
fileStream.Close();
return false;
}
compiledShader.resize(fileStream.GetLength() + 1); // +1 to add end of string
memset(compiledShader.data(), 0, fileStream.GetLength() + 1);
fileStream.Read(fileStream.GetLength(), compiledShader.data());
fileStream.Close();
//Ensure that the argument buffer declaration in the shader matches the srg layout
return AddUnusedResources(compiledShader);
}
bool ShaderPlatformInterface::CreateMetalLib(const char* platformName,
const AZStd::string& shaderSourceFile,
const AZStd::string& tempFolder,
AZStd::vector<uint8_t>& compiledByteCode,
AZStd::vector<char>& sourceMetalShader,
const AssetBuilderSDK::PlatformInfo& platform) const
{
AZStd::string inputMetalFile = RHI::BuildFileNameWithExtension(shaderSourceFile, tempFolder, "metal");
AZ::IO::FileIOStream sourceMtlfileStream(inputMetalFile.c_str(), AZ::IO::OpenMode::ModeWrite | AZ::IO::OpenMode::ModeBinary);
if (!sourceMtlfileStream.IsOpen())
{
AZ_Error(platformName, false, "Failed because the shader file \"%s\" could not be opened", inputMetalFile.c_str());
return false;
}
AZStd::string mtlSource = AZStd::string(sourceMetalShader.begin(), sourceMetalShader.end());
sourceMtlfileStream.Write(mtlSource.size(), mtlSource.data());
sourceMtlfileStream.Close();
AZStd::string outputAirFile = RHI::BuildFileNameWithExtension(shaderSourceFile, tempFolder, "air");
AZStd::string outMetalLibFile = RHI::BuildFileNameWithExtension(shaderSourceFile, tempFolder, "metallib");
//Debug symbols are always enabled at the moment. Need to turn them off for optimized shader assets.
AZStd::string shaderDebugInfo = "-gline-tables-only -MO";
//Apply the correct platform sdk option
AZStd::string platformSdk = "macosx";
if (platform.HasTag("mobile"))
{
platformSdk = "iphoneos";
}
//Convert to air file
AZStd::string mslToAirCommandOptions = AZStd::string::format("-sdk %s metal \"%s\" %s -c -o \"%s\"", platformSdk.c_str(), inputMetalFile.c_str(), shaderDebugInfo.c_str(), outputAirFile.c_str());
if (!RHI::ExecuteShaderCompiler("/usr/bin/xcrun", mslToAirCommandOptions, inputMetalFile, "MslToAir"))
{
AZ_Error(MetalShaderPlatformName, false, "Failed to convert to AIR file %s", inputMetalFile.c_str());
return false;
}
//convert to metallib
AZStd::string airToMetalLibCommandOptions = AZStd::string::format("-sdk %s metallib \"%s\" -o \"%s\"", platformSdk.c_str(), outputAirFile.c_str(), outMetalLibFile.c_str());
if (!RHI::ExecuteShaderCompiler("/usr/bin/xcrun", airToMetalLibCommandOptions, outputAirFile, "AirToMetallib"))
{
AZ_Error(MetalShaderPlatformName, false, "Failed to convert to metallib file");
return false;
}
AZ::IO::FileIOStream fileStream(outMetalLibFile.data(), AZ::IO::OpenMode::ModeRead);
compiledByteCode.resize(fileStream.GetLength());
memset(compiledByteCode.data(), 0, fileStream.GetLength() );
fileStream.Read(fileStream.GetLength(), compiledByteCode.data());
fileStream.Close();
return true;
}
bool ShaderPlatformInterface::AddUnusedResources(AZStd::vector<char>& compiledShader) const
{
AZStd::string finalMetalSLStr = AZStd::string(compiledShader.begin(), compiledShader.end());
const uint32_t groupLayoutCount = static_cast<uint32_t>(m_srgLayouts.size());
AZStd::string constantBufferTempStructs = "\n";
AZStd::string structuredBufferTempStructs = "\n";
for (uint32_t groupLayoutIndex = 0; groupLayoutIndex < groupLayoutCount; ++groupLayoutIndex)
{
//const auto& srgInfo = m_srgInfoList[groupLayoutIndex];
const RHI::ShaderResourceGroupLayout& groupLayout = *m_srgLayouts[groupLayoutIndex];
//Check if an argument buffer declaration exists for this srg layout.
AZStd::string srgBuffer = AZStd::string::format("spvDescriptorSetBuffer%i", groupLayoutIndex);
size_t startOfArgBufferPos = finalMetalSLStr.find(srgBuffer);
if (startOfArgBufferPos == AZStd::string::npos)
{
continue;
}
size_t endOfArgBufferPos = finalMetalSLStr.find("}", startOfArgBufferPos);
AZStd::string fullArgBufferDeclarationStr = finalMetalSLStr.substr(startOfArgBufferPos,endOfArgBufferPos - startOfArgBufferPos + 1);
//Add all the existing or dummy entries into m_argBufferEntries which is a set. The reason for using a set
//is because we need the entries to be sorted based on the register and we do not want duplicates.
bool result = AddConstantBufferEntries(groupLayout, constantBufferTempStructs, fullArgBufferDeclarationStr, groupLayoutIndex);
if(!result)
{
AZ_Error(MetalShaderPlatformName, false, "Failed because adding constant buffer entries within AddUnusedResources failed");
return false;
}
result = AddImageEntries(groupLayout, fullArgBufferDeclarationStr);
if(!result)
{
AZ_Error(MetalShaderPlatformName, false, "Failed because adding image entries within AddUnusedResources failed");
return false;
}
result = AddSamplerEntries(groupLayout, fullArgBufferDeclarationStr);
if(!result)
{
AZ_Error(MetalShaderPlatformName, false, "Failed because adding static sampler entries within AddUnusedResources failed");
return false;
}
result = AddBufferEntries(groupLayout, structuredBufferTempStructs, fullArgBufferDeclarationStr, groupLayoutIndex);
if(!result)
{
AZ_Error(MetalShaderPlatformName, false, "Failed because adding buffer entries within AddUnusedResources failed");
return false;
}
//Create a new spvDescriptorSetBuffer which matches the layout.
AZStd::string newArgBufferLayoutStr = "\n";
for (const ArgBufferEntries &entry : m_argBufferEntries )
{
newArgBufferLayoutStr += " " + entry.first + "\n";
}
//Replace the existing declaration with the new one just generated.
//We look for '{' and '}' to find out boundaries of the argument buffer declaration to replace
size_t startOfArgBufferBracketPos = finalMetalSLStr.find("{", startOfArgBufferPos) + 1;
size_t endOfArgBufferBracketPos = finalMetalSLStr.find("}", startOfArgBufferBracketPos) - 1;
finalMetalSLStr.replace(startOfArgBufferBracketPos, endOfArgBufferBracketPos - startOfArgBufferBracketPos, newArgBufferLayoutStr);
m_argBufferEntries.clear();
}
//Add dummy definitions of constant buffer and structured buffer types to the top of the file
AZStd::string startOfShaderTag = "using namespace metal;";
const size_t startOfShaderPos = finalMetalSLStr.find(startOfShaderTag);
if (startOfShaderPos != AZStd::string::npos)
{
finalMetalSLStr.insert(startOfShaderPos + startOfShaderTag.length() + 1, constantBufferTempStructs);
finalMetalSLStr.insert(startOfShaderPos + startOfShaderTag.length() + 1, structuredBufferTempStructs);
}
compiledShader = AZStd::vector<char>(finalMetalSLStr.begin(), finalMetalSLStr.end());
return true;
}
bool ShaderPlatformInterface::AddConstantBufferEntries(const RHI::ShaderResourceGroupLayout& groupLayout,
AZStd::string& constantBufferTempStructs,
AZStd::string& argBufferStr,
uint32_t groupLayoutIndex) const
{
AZStd::array_view<RHI::ShaderInputConstantDescriptor> shaderInputConstantList = groupLayout.GetShaderInputListForConstants();
if (shaderInputConstantList.empty())
{
return true;
}
//Only need the information from the first element of the constant buffer.
const RHI::ShaderInputConstantDescriptor& shaderInputConstant = shaderInputConstantList[0];
uint32_t regId = shaderInputConstant.m_registerId;
AZStd::string srgResource = AZStd::string::format("id(%i)", regId);
size_t resourceStartPos = argBufferStr.find(srgResource);
//Check if we need to create a dummy entry
if (resourceStartPos == AZStd::string::npos)
{
uint32_t numElements = groupLayout.GetConstantDataSize()/sizeof(float);
AZ_Assert(numElements > 0, "There needs to be atleast one element");
/*
* Add dummy declaration of the type. It looks like this
*
* struct type_DummyStruct"regId"_DescSet"groupLayoutIndex"
* {
* float dummyArray["numElements"];
* };
*
*/
constantBufferTempStructs += AZStd::string::format("struct type_DummyStruct%i_DescSet%i\n{\n float dummyArray[%i];\n};\n", regId, groupLayoutIndex, numElements);
//Create the final resource entry to be added to the set
AZStd::string dummyResource = AZStd::string::format("constant type_DummyStruct%i_DescSet%i* dummyConstantBuffer%i [[id(%i)]];", regId, groupLayoutIndex, regId, regId);
m_argBufferEntries.insert(AZStd::make_pair(dummyResource, regId));
return true;
}
else
{
//Constant buffer should always be in the constant address space
return AddExistingResourceEntry("constant type_ConstantBuffer", resourceStartPos, regId, argBufferStr);
}
}
bool ShaderPlatformInterface::AddImageEntries(const RHI::ShaderResourceGroupLayout& groupLayout,
AZStd::string& argBufferStr) const
{
bool result = true;
for (const RHI::ShaderInputImageDescriptor& shaderInputImage : groupLayout.GetShaderInputListForImages())
{
uint32_t regId = shaderInputImage.m_registerId;
AZStd::string srgResource = AZStd::string::format("id(%i)", regId);
const size_t resourceStartPos = argBufferStr.find(srgResource);
//Check if we need to create a dummy entry
if (resourceStartPos == AZStd::string::npos)
{
AZStd::string textureType;
switch(shaderInputImage.m_type)
{
case RHI::ShaderInputImageType::Image1D:
{
textureType = "texture1d";
break;
}
case RHI::ShaderInputImageType::Image1DArray:
{
textureType = "texture1d_array";
break;
}
case RHI::ShaderInputImageType::Image2D:
{
textureType = "texture2d";
break;
}
case RHI::ShaderInputImageType::Image2DArray:
{
textureType = "texture2d_array";
break;
}
case RHI::ShaderInputImageType::Image2DMultisample:
{
textureType = "texture2d_ms";
break;
}
case RHI::ShaderInputImageType::Image3D:
{
textureType = "texture3d";
break;
}
case RHI::ShaderInputImageType::ImageCube:
{
textureType = "texturecube";
break;
}
case RHI::ShaderInputImageType::ImageCubeArray:
{
textureType = "texturecube_array";
break;
}
default:
{
AZ_Assert(false, "Invalid texture type.");
}
}
//Create the resource entry to be added to the set. Handle arrays by checking the shaderInputImage.m_count
AZStd::string dummyResource;
if(shaderInputImage.m_count > 1)
{
dummyResource = AZStd::string::format("const array<%s<float>, %i> dummyImage%i [[id(%i)]];", textureType.c_str(), shaderInputImage.m_count, regId, regId);
}
else
{
dummyResource = AZStd::string::format("%s<float> dummyImage%i [[id(%i)]];", textureType.c_str(), regId, regId);
}
m_argBufferEntries.insert(AZStd::make_pair(dummyResource, regId));
}
else
{
bool isAdditionSuccessfull = AddExistingResourceEntry("texture", resourceStartPos, regId, argBufferStr);
if(!isAdditionSuccessfull)
{
//In metal depth textures use keyword depth2d/depth2d_array/depthcube/depthcube_array/depth2d_ms/depth2d_ms_array
isAdditionSuccessfull |= AddExistingResourceEntry("depth", resourceStartPos, regId, argBufferStr);
}
result &= isAdditionSuccessfull;
}
}
return result;
}
bool ShaderPlatformInterface::ProcessSamplerEntry(uint32_t regId, AZStd::string& argBufferStr, uint32_t samplercount) const
{
AZStd::string srgResource = AZStd::string::format("id(%i)", regId);
const size_t resourceStartPos = argBufferStr.find(srgResource);
//Check if we need to create a dummy entry
if (resourceStartPos == AZStd::string::npos)
{
//Create the resource entry to be added to the set. Handle arrays by checking the samplercount
AZStd::string dummyResource;
if(samplercount > 1)
{
dummyResource = AZStd::string::format("const array<sampler, %i> dummySampler%i [[id(%i)]];", samplercount, regId, regId);
}
else
{
dummyResource = AZStd::string::format("sampler dummySampler%i [[id(%i)]];", regId, regId);
}
m_argBufferEntries.insert(AZStd::make_pair(dummyResource, regId));
return true;
}
else
{
return AddExistingResourceEntry("sampler", resourceStartPos, regId, argBufferStr);
}
}
bool ShaderPlatformInterface::AddSamplerEntries(const RHI::ShaderResourceGroupLayout& groupLayout,
AZStd::string& argBufferStr) const
{
bool result = true;
for (const RHI::ShaderInputStaticSamplerDescriptor& staticSampler : groupLayout.GetStaticSamplers())
{
result &= ProcessSamplerEntry(staticSampler.m_registerId, argBufferStr, 0);
}
for (const RHI::ShaderInputSamplerDescriptor& dynamicSampler : groupLayout.GetShaderInputListForSamplers())
{
result &= ProcessSamplerEntry(dynamicSampler.m_registerId, argBufferStr, dynamicSampler.m_count);
}
return result;
}
bool ShaderPlatformInterface::AddBufferEntries(const RHI::ShaderResourceGroupLayout& groupLayout,
AZStd::string& structuredBufferTempStructs,
AZStd::string& argBufferStr,
uint32_t groupLayoutIndex) const
{
bool result = true;
for (const RHI::ShaderInputBufferDescriptor& shaderInputBuffer : groupLayout.GetShaderInputListForBuffers())
{
uint32_t regId = shaderInputBuffer.m_registerId;
AZStd::string srgResource = AZStd::string::format("id(%i)", regId);
size_t resourceStartPos = argBufferStr.find(srgResource);
//Check if we need to create a dummy entry
if (resourceStartPos == AZStd::string::npos)
{
uint32_t numElements = shaderInputBuffer.m_strideSize/sizeof(float);
AZ_Assert(numElements > 0, "There needs to be atleast one element");
/*
* Add dummy declaration of the type. It looks like this
*
* struct DummySRG_"Name"_DescSet"groupLayoutIndex"
* {
* float dummyArray["numElements"];
* };
*
* struct type_RWStructuredDummyBuffer"regId"_DescSet"groupLayoutIndex"
* {
* DummySRG_"Name"_DescSet"groupLayoutIndex" _m0["shaderInputBuffer.m_count"];
* };
*/
structuredBufferTempStructs += AZStd::string::format("struct DummySRG_%s_DescSet%i\n{\n float dummyArray[%i];\n};\n", shaderInputBuffer.m_name.GetCStr(), groupLayoutIndex, numElements);
structuredBufferTempStructs += AZStd::string::format("struct type_RWStructuredDummyBuffer%i_DescSet%i\n{\n DummySRG_%s_DescSet%i _m0[%i];\n};\n", regId, groupLayoutIndex, shaderInputBuffer.m_name.GetCStr(), groupLayoutIndex, shaderInputBuffer.m_count);
//Create the final resource entry to be added to the set
AZStd::string dummyResource = AZStd::string::format("device type_RWStructuredDummyBuffer%i_DescSet%i* dummyStructuredBuffer%i [[id(%i)]];", regId, groupLayoutIndex, regId, regId);
m_argBufferEntries.insert(AZStd::make_pair(dummyResource, regId));
}
else
{
bool entryAddedSuccessfully = false;
switch(shaderInputBuffer.m_type)
{
case RHI::ShaderInputBufferType::Structured:
{
switch(shaderInputBuffer.m_access)
{
case RHI::ShaderInputBufferAccess::Read:
{
entryAddedSuccessfully = AddExistingResourceEntry("const device type_StructuredBuffer", resourceStartPos, regId, argBufferStr);
break;
}
case RHI::ShaderInputBufferAccess::ReadWrite:
{
entryAddedSuccessfully = AddExistingResourceEntry("device type_RWStructuredBuffer", resourceStartPos, regId, argBufferStr);
break;
}
}
break;
}
case RHI::ShaderInputBufferType::Typed:
{
switch(shaderInputBuffer.m_access)
{
case RHI::ShaderInputBufferAccess::Read:
case RHI::ShaderInputBufferAccess::ReadWrite:
{
entryAddedSuccessfully = AddExistingResourceEntry("texture_buffer", resourceStartPos, regId, argBufferStr);
break;
}
}
break;
}
case RHI::ShaderInputBufferType::Raw:
{
switch(shaderInputBuffer.m_access)
{
case RHI::ShaderInputBufferAccess::Read:
{
entryAddedSuccessfully = AddExistingResourceEntry("const device type_ByteAddressBuffer", resourceStartPos, regId, argBufferStr);
break;
}
case RHI::ShaderInputBufferAccess::ReadWrite:
{
entryAddedSuccessfully = AddExistingResourceEntry("device type_RWByteAddressBuffer", resourceStartPos, regId, argBufferStr);
break;
}
}
break;
}
case RHI::ShaderInputBufferType::Constant:
{
entryAddedSuccessfully = AddExistingResourceEntry("constant type_ConstantBuffer", resourceStartPos, regId, argBufferStr);
break;
}
}
result = result && entryAddedSuccessfully;
}
}
return result;
}
bool ShaderPlatformInterface::AddExistingResourceEntry(const char* resourceStr,
size_t resourceStartPos,
uint32_t regId,
AZStd::string& argBufferStr) const
{
size_t prevEndOfLine = argBufferStr.rfind("\n", resourceStartPos);
size_t nextEndOfLine = argBufferStr.find("\n", resourceStartPos);
size_t startOfEntryPos = argBufferStr.find(resourceStr, prevEndOfLine);
//Check to see if a valid entry is found.
if(startOfEntryPos == AZStd::string::npos || startOfEntryPos > nextEndOfLine)
{
AZ_Error(MetalShaderPlatformName, startOfEntryPos != AZStd::string::npos, "Entry-> %s not found within Descriptor set %s", resourceStr, argBufferStr.c_str());
return false;
}
else
{
size_t endOfEntryPos = argBufferStr.find("\n", startOfEntryPos);
AZ_Assert(endOfEntryPos != AZStd::string::npos, "Resource entry missing");
AZStd::string existingEntry = argBufferStr.substr(prevEndOfLine,endOfEntryPos - prevEndOfLine);
m_argBufferEntries.insert(AZStd::make_pair(existingEntry, regId));
return true;
}
}
}
}