You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/PhysX/Code/NumericalMethods/Tests/OptimizationTest.cpp

191 lines
8.5 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#include <AzTest/AzTest.h>
#include <NumericalMethods/Optimization.h>
#include <Optimization/SolverBFGS.h>
#include <Optimization/LineSearch.h>
#include <Optimization/Constants.h>
#include <Optimization/Utilities.h>
#include <Tests/Environment.h>
namespace NumericalMethods::Optimization
{
// The Rosenbrock function is a function commonly used to test optimization routines because it has a very long, narrow
// valley
struct
{
double a = 1.0;
double b = 100.0;
} RosenbrockConstants;
class TestFunctionRosenbrock
: public Optimization::Function
{
public:
TestFunctionRosenbrock() = default;
private:
virtual AZ::u32 GetDimension() const override
{
return 2;
}
virtual AZ::Outcome<double, FunctionOutcome> ExecuteImpl(const AZStd::vector<double>& x) const override
{
return AZ::Success((RosenbrockConstants.a - x[0]) * (RosenbrockConstants.a - x[0]) +
RosenbrockConstants.b * (x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0]));
}
};
VectorVariable TestFunctionRosenbrockGradient(const VectorVariable p)
{
double x = p[0];
double y = p[1];
VectorVariable gradient(2);
gradient[0] = -2.0 * (RosenbrockConstants.a - x) - 4.0 * RosenbrockConstants.b * x * (y - x * x);
gradient[1] = 2.0 * RosenbrockConstants.b * (y - x * x);
return gradient;
}
TEST(OptimizationTest, FunctionValue_RosenbrockFunction_CorrectValues)
{
TestFunctionRosenbrock testFunctionRosenbrock;
EXPECT_NEAR(FunctionValue(testFunctionRosenbrock, VectorVariable::CreateFromVector({ 1.0, 1.0 })), 0.0, 1e-3);
EXPECT_NEAR(FunctionValue(testFunctionRosenbrock, VectorVariable::CreateFromVector({ 3.0, 5.0 })), 1604.0, 1e-3);
EXPECT_NEAR(FunctionValue(testFunctionRosenbrock, VectorVariable::CreateFromVector({ -2.0, 4.0 })), 9.0, 1e-3);
EXPECT_NEAR(FunctionValue(testFunctionRosenbrock, VectorVariable::CreateFromVector({ -3.0, 7.0 })), 416.0, 1e-3);
EXPECT_NEAR(FunctionValue(testFunctionRosenbrock, VectorVariable::CreateFromVector({ 0.0, 5.0 })), 2501.0, 1e-3);
EXPECT_NEAR(FunctionValue(testFunctionRosenbrock, VectorVariable::CreateFromVector({ 4.0, 0.0 })), 25609.0, 1e-3);
}
TEST(OptimizationTest, Gradient_RosenbrockFunction_CorrectGradient)
{
TestFunctionRosenbrock testFunctionRosenbrock;
VectorVariable x(2);
for (double x0 = -5.0; x0 < 6.0; x0 += 2.0)
{
for (double x1 = -5.0; x1 < 6.0; x1 += 2.0)
{
x[0] = x0;
x[1] = x1;
VectorVariable gradient = Gradient(testFunctionRosenbrock, x);
VectorVariable expectedGradient = TestFunctionRosenbrockGradient(x);
ExpectClose(gradient, expectedGradient, 1e-3);
}
}
}
TEST(OptimizationTest, DirectionalDerivative_RosenbrockFunction_CorrectDerivative)
{
TestFunctionRosenbrock testFunctionRosenbrock;
VectorVariable x(2);
x[0] = 3.0;
x[1] = -4.0;
VectorVariable direction(2);
for (double d0 = -5.0; d0 < 6.0; d0 += 2.0)
{
for (double d1 = -5.0; d1 < 6.0; d1 += 2.0)
{
direction[0] = d0;
direction[1] = d1;
double directionalDerivative = DirectionalDerivative(testFunctionRosenbrock, x, direction);
double expectedDirectionalDerivative = TestFunctionRosenbrockGradient(x).Dot(direction);
EXPECT_NEAR(directionalDerivative, expectedDirectionalDerivative, 1e-3);
}
}
}
TEST(OptimizationTest, CubicMinimum_KnownCubic_CorrectMinimum)
{
double expectedMinimum = 3.0;
double otherRoot = -7.0;
double a = 0.0;
double f_a = (a - expectedMinimum) * (a - expectedMinimum) * (a - otherRoot);
double df_a = 2.0 * (a - expectedMinimum) * (a - otherRoot) + (a - expectedMinimum) * (a - expectedMinimum);
double b = 5.0;
double f_b = (b - expectedMinimum) * (b - expectedMinimum) * (b - otherRoot);
double c = -3.0;
double f_c = (c - expectedMinimum) * (c - expectedMinimum) * (c - otherRoot);
double calculatedMinimum = CubicMinimum(a, f_a, df_a, b, f_b, c, f_c);
EXPECT_NEAR(calculatedMinimum, expectedMinimum, 1e-3);
}
TEST(OptimizationTest, QuadraticMinimum_KnownQuadratic_CorrectMinimum)
{
double expectedMinimum = 2.0;
double a = -1.0;
double f_a = 5.0 * (a - expectedMinimum) * (a - expectedMinimum) + 7.0;
double df_a = 10.0 * (a - expectedMinimum);
double b = 1.0;
double f_b = 5.0 * (b - expectedMinimum) * (b - expectedMinimum) + 7.0;
double calculatedMinimum = QuadraticMinimum(a, f_a, df_a, b, f_b);
EXPECT_NEAR(calculatedMinimum, expectedMinimum, 1e-3);
}
TEST(OptimizationTest, ValidateStepSize_ValidateStepSize_CorrectResult)
{
EXPECT_TRUE(ValidateStepSize(0.5, 0.0, 1.0, 0.1));
EXPECT_FALSE(ValidateStepSize(0.05, 0.0, 1.0, 0.1));
EXPECT_FALSE(ValidateStepSize(-0.5, 0.0, 1.0, 0.1));
EXPECT_FALSE(ValidateStepSize(1.5, 0.0, 1.0, 0.1));
EXPECT_TRUE(ValidateStepSize(1.5, 2.0, -1.0, 0.05));
EXPECT_FALSE(ValidateStepSize(std::numeric_limits<double>::quiet_NaN(), 2.0, 0.0, 0.1));
EXPECT_FALSE(ValidateStepSize(std::numeric_limits<double>::infinity(), -1.0, 3.0, 0.2));
}
TEST(OptimizationTest, LineSearch_SelectStepSizeFromInterval_SatisfiesWolfeConditions)
{
TestFunctionRosenbrock testFunctionRosenbrock;
VectorVariable x0 = VectorVariable::CreateFromVector({ 7.0, 7.0 });
VectorVariable searchDirection = VectorVariable::CreateFromVector({ -1.0, -1.0 });
double alpha0 = 0.0;
double alpha1 = 20.0;
double f_alpha0 = FunctionValue(testFunctionRosenbrock, x0);
double f_alpha1 = FunctionValue(testFunctionRosenbrock, x0 + alpha1 * searchDirection);
double df_alpha0 = DirectionalDerivative(testFunctionRosenbrock, x0, searchDirection);
double f_x0 = f_alpha0;
double df_x0 = df_alpha0;
LineSearchResult lineSearchResult = SelectStepSizeFromInterval(alpha0, alpha1, f_alpha0, f_alpha1, df_alpha0,
testFunctionRosenbrock, x0, searchDirection, f_x0, df_x0, WolfeConditionsC1, WolfeConditionsC2);
EXPECT_TRUE(lineSearchResult.m_outcome == LineSearchOutcome::Success);
// check that the Wolfe conditions are satisfied by the returned step size
EXPECT_TRUE(lineSearchResult.m_functionValue < f_x0 + WolfeConditionsC1 * df_x0 * lineSearchResult.m_stepSize);
EXPECT_TRUE(fabs(lineSearchResult.m_derivativeValue) <= -WolfeConditionsC2 * df_x0);
}
TEST(OptimizationTest, LineSearch_VariousSearchDirections_SatisfiesWolfeCondition)
{
TestFunctionRosenbrock testFunctionRosenbrock;
VectorVariable x0 = VectorVariable::CreateFromVector({ 7.0, 7.0 });
AZStd::vector<AZStd::vector<double>> searchVectors = { { -1.0, -1.0 }, { -0.1, -0.2 }, { -8.0, -9.0 } };
for (const auto& searchVector : searchVectors)
{
VectorVariable searchDirection = VectorVariable::CreateFromVector(searchVector);
double f_x0 = FunctionValue(testFunctionRosenbrock, x0);
double df_x0 = DirectionalDerivative(testFunctionRosenbrock, x0, searchDirection);
LineSearchResult lineSearchResult = LineSearchWolfe(testFunctionRosenbrock, x0, f_x0, searchDirection);
EXPECT_TRUE(lineSearchResult.m_outcome == LineSearchOutcome::Success);
// check that the Wolfe conditions are satisfied by the returned step size
EXPECT_TRUE(lineSearchResult.m_functionValue < f_x0 + WolfeConditionsC1 * df_x0 * lineSearchResult.m_stepSize);
EXPECT_TRUE(fabs(lineSearchResult.m_derivativeValue) <= -WolfeConditionsC2 * df_x0);
}
}
TEST(OptimizationTest, MinimizeBFGS_RosenbrockFunction_CorrectMinimum)
{
TestFunctionRosenbrock testFunctionRosenbrock;
AZStd::vector<double> xInitial = { -7.0, 11.0 };
SolverResult solverResult = MinimizeBFGS(testFunctionRosenbrock, xInitial);
AZStd::vector<double> xExpected = { 1.0, 1.0 };
ExpectClose(solverResult.m_xValues, xExpected, 1e-3);
}
} // namespace NumericalMethods::Optimization