You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.6 KiB
C++
170 lines
5.6 KiB
C++
/*
|
|
* Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 OR MIT
|
|
*
|
|
*/
|
|
|
|
#include <cmath>
|
|
|
|
#include <AzCore/std/algorithm.h>
|
|
|
|
#include <LinearAlgebra.h>
|
|
#include <Eigenanalysis/Utilities.h>
|
|
|
|
namespace NumericalMethods::Eigenanalysis
|
|
{
|
|
VectorVariable CrossProduct(const VectorVariable& lhs, const VectorVariable& rhs)
|
|
{
|
|
AZ_Assert(
|
|
lhs.GetDimension() == 3 && rhs.GetDimension() == 3, "VectorVariable dimensions invalid for cross product."
|
|
);
|
|
|
|
return VectorVariable::CreateFromVector({
|
|
lhs[1] * rhs[2] - lhs[2] * rhs[1],
|
|
lhs[2] * rhs[0] - lhs[0] * rhs[2],
|
|
lhs[0] * rhs[1] - lhs[1] * rhs[0]
|
|
});
|
|
}
|
|
|
|
void ComputeOrthogonalComplement(
|
|
const VectorVariable& vecW, VectorVariable& vecU, VectorVariable& vecV
|
|
)
|
|
{
|
|
// Robustly computes a right-handed orthogonal basis {vecU, vecV, vecW}.
|
|
double invLength = 1.0;
|
|
|
|
if (fabs(vecW[0]) > fabs(vecW[1]))
|
|
{
|
|
// The component of maximum absolute value is either vecW[0] or vecW[2].
|
|
invLength /= sqrt(vecW[0] * vecW[0] + vecW[2] * vecW[2]);
|
|
vecU = VectorVariable::CreateFromVector({ -vecW[2] * invLength, 0.0, vecW[0] * invLength });
|
|
}
|
|
else
|
|
{
|
|
// The component of maximum absolute value is either vecW[1] or vecW[2].
|
|
invLength /= sqrt(vecW[1] * vecW[1] + vecW[2] * vecW[2]);
|
|
vecU = VectorVariable::CreateFromVector({ 0.0, vecW[2] * invLength, -vecW[1] * invLength });
|
|
}
|
|
|
|
vecV = CrossProduct(vecW, vecU);
|
|
}
|
|
|
|
VectorVariable ComputeEigenvector0(
|
|
double a00, double a01, double a02, double a11, double a12, double a22, double val
|
|
)
|
|
{
|
|
// By definition, (A-e*I)v = 0, where e is the eigenvalue and v is the corresponding eigenvector to be found.
|
|
// This condition implies that the rows (A-e*I) must be perpendicular to v. This matrix must have rank 2, so two
|
|
// rows will be linearly dependent. For those two rows, the cross product will be (nearly) zero. So to find v,
|
|
// we can simply take the cross product of the two rows that maximize its magnitude.
|
|
VectorVariable row0 = VectorVariable::CreateFromVector({ a00 - val, a01, a02 });
|
|
VectorVariable row1 = VectorVariable::CreateFromVector({ a01, a11 - val, a12 });
|
|
VectorVariable row2 = VectorVariable::CreateFromVector({ a02, a12, a22 - val });
|
|
|
|
VectorVariable r0xr1 = CrossProduct(row0, row1);
|
|
VectorVariable r0xr2 = CrossProduct(row0, row2);
|
|
VectorVariable r1xr2 = CrossProduct(row1, row2);
|
|
|
|
double d0 = r0xr1.Dot(r0xr1);
|
|
double d1 = r0xr2.Dot(r0xr2);
|
|
double d2 = r1xr2.Dot(r1xr2);
|
|
|
|
return d0 >= d1 && d0 >= d2 ? r0xr1 * (1.0 / sqrt(d0)) :
|
|
d1 >= d0 && d1 >= d2 ? r0xr2 * (1.0 / sqrt(d1)) :
|
|
r1xr2 * (1.0 / sqrt(d2)) ;
|
|
}
|
|
|
|
VectorVariable ComputeEigenvector1(
|
|
double a00,
|
|
double a01,
|
|
double a02,
|
|
double a11,
|
|
double a12,
|
|
double a22,
|
|
double val,
|
|
const VectorVariable& vec
|
|
)
|
|
{
|
|
// Real symmetric matrices must have orthogonal eigenvectors. Thus, if we generate two vectors vecU and vecV
|
|
// orthogonal to the eigenvector vec already found, the remaining eigenvectors must be a circular combination
|
|
// of vecU and vecW. This reduces the problem to a 2D system. For details see Eberly.
|
|
VectorVariable vecU(3);
|
|
VectorVariable vecV(3);
|
|
ComputeOrthogonalComplement(vec, vecU, vecV);
|
|
|
|
MatrixVariable matA(3, 3);
|
|
|
|
matA.Element(0, 0) = a00;
|
|
matA.Element(0, 1) = a01;
|
|
matA.Element(0, 2) = a02;
|
|
|
|
matA.Element(1, 0) = a01;
|
|
matA.Element(1, 1) = a11;
|
|
matA.Element(1, 2) = a12;
|
|
|
|
matA.Element(2, 0) = a02;
|
|
matA.Element(2, 1) = a12;
|
|
matA.Element(2, 2) = a22;
|
|
|
|
double m00 = vecU.Dot(matA * vecU) - val;
|
|
double absM00 = fabs(m00);
|
|
|
|
double m01 = vecU.Dot(matA * vecV);
|
|
double absM01 = fabs(m01);
|
|
|
|
double m11 = vecV.Dot(matA * vecV) - val;
|
|
double absM11 = fabs(m11);
|
|
|
|
auto discardComponentAndNormalize = [](double& factor, double& other) {
|
|
other /= factor;
|
|
factor = 1.0 / sqrt(1.0 + other * other);
|
|
other *= factor;
|
|
};
|
|
|
|
if (absM00 > absM11)
|
|
{
|
|
if (AZStd::max(absM00, absM01) > 0.0)
|
|
{
|
|
if (absM00 >= absM01)
|
|
{
|
|
discardComponentAndNormalize(m00, m01);
|
|
}
|
|
else
|
|
{
|
|
discardComponentAndNormalize(m01, m00);
|
|
}
|
|
return vecU * m01 - vecV * m00;
|
|
}
|
|
else
|
|
{
|
|
return vecU;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (AZStd::max(absM11, absM01) > 0.0)
|
|
{
|
|
if (absM11 >= absM01)
|
|
{
|
|
discardComponentAndNormalize(m11, m01);
|
|
}
|
|
else
|
|
{
|
|
discardComponentAndNormalize(m01, m11);
|
|
}
|
|
return vecU * m11 - vecV * m01;
|
|
}
|
|
else
|
|
{
|
|
return vecU;
|
|
}
|
|
}
|
|
}
|
|
|
|
VectorVariable ComputeEigenvector2(const VectorVariable& vec0, const VectorVariable& vec1)
|
|
{
|
|
return CrossProduct(vec0, vec1);
|
|
}
|
|
} // namespace NumericalMethods::Eigenanalysis
|