You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/PhysX/Code/NumericalMethods/Source/Eigenanalysis/EigenanalysisUtilities.cpp

170 lines
5.6 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#include <cmath>
#include <AzCore/std/algorithm.h>
#include <LinearAlgebra.h>
#include <Eigenanalysis/Utilities.h>
namespace NumericalMethods::Eigenanalysis
{
VectorVariable CrossProduct(const VectorVariable& lhs, const VectorVariable& rhs)
{
AZ_Assert(
lhs.GetDimension() == 3 && rhs.GetDimension() == 3, "VectorVariable dimensions invalid for cross product."
);
return VectorVariable::CreateFromVector({
lhs[1] * rhs[2] - lhs[2] * rhs[1],
lhs[2] * rhs[0] - lhs[0] * rhs[2],
lhs[0] * rhs[1] - lhs[1] * rhs[0]
});
}
void ComputeOrthogonalComplement(
const VectorVariable& vecW, VectorVariable& vecU, VectorVariable& vecV
)
{
// Robustly computes a right-handed orthogonal basis {vecU, vecV, vecW}.
double invLength = 1.0;
if (fabs(vecW[0]) > fabs(vecW[1]))
{
// The component of maximum absolute value is either vecW[0] or vecW[2].
invLength /= sqrt(vecW[0] * vecW[0] + vecW[2] * vecW[2]);
vecU = VectorVariable::CreateFromVector({ -vecW[2] * invLength, 0.0, vecW[0] * invLength });
}
else
{
// The component of maximum absolute value is either vecW[1] or vecW[2].
invLength /= sqrt(vecW[1] * vecW[1] + vecW[2] * vecW[2]);
vecU = VectorVariable::CreateFromVector({ 0.0, vecW[2] * invLength, -vecW[1] * invLength });
}
vecV = CrossProduct(vecW, vecU);
}
VectorVariable ComputeEigenvector0(
double a00, double a01, double a02, double a11, double a12, double a22, double val
)
{
// By definition, (A-e*I)v = 0, where e is the eigenvalue and v is the corresponding eigenvector to be found.
// This condition implies that the rows (A-e*I) must be perpendicular to v. This matrix must have rank 2, so two
// rows will be linearly dependent. For those two rows, the cross product will be (nearly) zero. So to find v,
// we can simply take the cross product of the two rows that maximize its magnitude.
VectorVariable row0 = VectorVariable::CreateFromVector({ a00 - val, a01, a02 });
VectorVariable row1 = VectorVariable::CreateFromVector({ a01, a11 - val, a12 });
VectorVariable row2 = VectorVariable::CreateFromVector({ a02, a12, a22 - val });
VectorVariable r0xr1 = CrossProduct(row0, row1);
VectorVariable r0xr2 = CrossProduct(row0, row2);
VectorVariable r1xr2 = CrossProduct(row1, row2);
double d0 = r0xr1.Dot(r0xr1);
double d1 = r0xr2.Dot(r0xr2);
double d2 = r1xr2.Dot(r1xr2);
return d0 >= d1 && d0 >= d2 ? r0xr1 * (1.0 / sqrt(d0)) :
d1 >= d0 && d1 >= d2 ? r0xr2 * (1.0 / sqrt(d1)) :
r1xr2 * (1.0 / sqrt(d2)) ;
}
VectorVariable ComputeEigenvector1(
double a00,
double a01,
double a02,
double a11,
double a12,
double a22,
double val,
const VectorVariable& vec
)
{
// Real symmetric matrices must have orthogonal eigenvectors. Thus, if we generate two vectors vecU and vecV
// orthogonal to the eigenvector vec already found, the remaining eigenvectors must be a circular combination
// of vecU and vecW. This reduces the problem to a 2D system. For details see Eberly.
VectorVariable vecU(3);
VectorVariable vecV(3);
ComputeOrthogonalComplement(vec, vecU, vecV);
MatrixVariable matA(3, 3);
matA.Element(0, 0) = a00;
matA.Element(0, 1) = a01;
matA.Element(0, 2) = a02;
matA.Element(1, 0) = a01;
matA.Element(1, 1) = a11;
matA.Element(1, 2) = a12;
matA.Element(2, 0) = a02;
matA.Element(2, 1) = a12;
matA.Element(2, 2) = a22;
double m00 = vecU.Dot(matA * vecU) - val;
double absM00 = fabs(m00);
double m01 = vecU.Dot(matA * vecV);
double absM01 = fabs(m01);
double m11 = vecV.Dot(matA * vecV) - val;
double absM11 = fabs(m11);
auto discardComponentAndNormalize = [](double& factor, double& other) {
other /= factor;
factor = 1.0 / sqrt(1.0 + other * other);
other *= factor;
};
if (absM00 > absM11)
{
if (AZStd::max(absM00, absM01) > 0.0)
{
if (absM00 >= absM01)
{
discardComponentAndNormalize(m00, m01);
}
else
{
discardComponentAndNormalize(m01, m00);
}
return vecU * m01 - vecV * m00;
}
else
{
return vecU;
}
}
else
{
if (AZStd::max(absM11, absM01) > 0.0)
{
if (absM11 >= absM01)
{
discardComponentAndNormalize(m11, m01);
}
else
{
discardComponentAndNormalize(m01, m11);
}
return vecU * m11 - vecV * m01;
}
else
{
return vecU;
}
}
}
VectorVariable ComputeEigenvector2(const VectorVariable& vec0, const VectorVariable& vec1)
{
return CrossProduct(vec0, vec1);
}
} // namespace NumericalMethods::Eigenanalysis