You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
o3de/Gems/PhysX/Code/Tests/Benchmarks/PhysXCharactersRagdollBench...

305 lines
13 KiB
C++

/*
* Copyright (c) Contributors to the Open 3D Engine Project.
* For complete copyright and license terms please see the LICENSE at the root of this distribution.
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
*/
#ifdef HAVE_BENCHMARK
#include <benchmark/benchmark.h>
#include <AzTest/AzTest.h>
#include <AzTest/Utils.h>
#include <AzCore/Math/MathUtils.h>
#include <Benchmarks/PhysXBenchmarksCommon.h>
#include <Benchmarks/PhysXBenchmarksUtilities.h>
#include <Benchmarks/PhysXBenchmarkWashingMachine.h>
#include <AzFramework/Physics/SystemBus.h>
#include <RagdollTestData.h>
#include <AzFramework/Physics/RagdollPhysicsBus.h>
#include <PhysXCharacters/API/Ragdoll.h>
#include <PhysXCharacters/API/CharacterUtils.h>
#include <PhysXTestCommon.h>
namespace PhysX::Benchmarks
{
namespace RagdollConstants
{
//! Controls the simulation length of the test. 30secs at 60fps
static const int GameFramesToSimulate = 1800;
//! The size of the test terrain
static const float TerrainSize = 1000.0f;
//! Decide if CCD should be on/off for the following tests
static const bool CCDEnabled = true;
//! Constant seed to use with random number generation
static const long long RandGenSeed = 909; //(Number generated by adding 'Character' ascii character codes together (67+104+97+114+97+99+116+101+114).
//! Settings used to setup each benchmark
namespace BenchmarkSettings
{
//! Values passed to benchmark to select the number of rigid bodies to spawn during each test
//! Current values will run tests between StartRange to EndRange (inclusive), multiplying by RangeMultiplier each step.
static const int StartRange = 1;
static const int EndRange = 64;
static const int RangeMultipler = 2;
//! Number of iterations for each test
static const int NumIterations = 3;
} // namespace BenchmarkSettings
//! Constants for setting up the washing machine
namespace WashingMachine
{
static const float CylinderRadius = 5.0f;
static const float CylinderHeight = 10.0f;
static const float BladeRPM = 7.5f;
} // namespace WashingMachine
} // namespace RagdollConstants
//! Ragdoll performance fixture.
//! Will create a world, and terrain used within the test.
class PhysXCharactersRagdollBenchmarkFixture
: public PhysX::Benchmarks::PhysXBaseBenchmarkFixture
{
void internalSetUp()
{
PhysX::Benchmarks::PhysXBaseBenchmarkFixture::SetUpInternal();
//need to get the Physics::System to be able to spawn the rigid bodies
m_system = AZ::Interface<Physics::System>::Get();
m_terrainEntity = PhysX::TestUtils::CreateFlatTestTerrain(m_testSceneHandle, RagdollConstants::TerrainSize, RagdollConstants::TerrainSize);
}
void internalTearDown()
{
m_terrainEntity = nullptr;
PhysX::Benchmarks::PhysXBaseBenchmarkFixture::TearDownInternal();
}
public:
void SetUp(const benchmark::State&) override
{
internalSetUp();
}
void SetUp(benchmark::State&) override
{
internalSetUp();
}
void TearDown(const benchmark::State&) override
{
internalTearDown();
}
void TearDown(benchmark::State&) override
{
internalTearDown();
}
protected:
// PhysXBaseBenchmarkFixture Overrides ...
AzPhysics::SceneConfiguration GetDefaultSceneConfiguration() override
{
AzPhysics::SceneConfiguration sceneConfig = AzPhysics::SceneConfiguration::CreateDefault();
sceneConfig.m_enableCcd = RagdollConstants::CCDEnabled;
return sceneConfig;
}
Physics::System* m_system;
PhysX::EntityPtr m_terrainEntity;
};
Physics::RagdollState GetTPose(const AZ::Vector3& position, Physics::SimulationType simulationType = Physics::SimulationType::Dynamic)
{
Physics::RagdollState ragdollState;
for (int nodeIndex = 0; nodeIndex < RagdollTestData::NumNodes; nodeIndex++)
{
Physics::RagdollNodeState nodeState;
nodeState.m_position = RagdollTestData::NodePositions[nodeIndex] + position;
nodeState.m_orientation = RagdollTestData::NodeOrientations[nodeIndex];
nodeState.m_simulationType = simulationType;
ragdollState.push_back(nodeState);
}
return ragdollState;
}
Physics::RagdollState GetTPose(Physics::SimulationType simulationType = Physics::SimulationType::Dynamic)
{
return GetTPose(AZ::Vector3::CreateZero(), simulationType);
}
PhysX::Ragdoll* CreateRagdoll(AzPhysics::SceneHandle sceneHandle)
{
Physics::RagdollConfiguration* configuration =
AZ::Utils::LoadObjectFromFile<Physics::RagdollConfiguration>(AZ::Test::GetEngineRootPath() + "/Gems/PhysX/Code/Tests/RagdollConfiguration.xml");
configuration->m_initialState = GetTPose();
configuration->m_parentIndices.reserve(configuration->m_nodes.size());
for (int i = 0; i < configuration->m_nodes.size(); i++)
{
configuration->m_parentIndices.push_back(RagdollTestData::ParentIndices[i]);
}
if (auto* sceneInterface = AZ::Interface<AzPhysics::SceneInterface>::Get())
{
AzPhysics::SimulatedBodyHandle bodyHandle = sceneInterface->AddSimulatedBody(sceneHandle, configuration);
return azdynamic_cast<Ragdoll*>(sceneInterface->GetSimulatedBodyFromHandle(sceneHandle, bodyHandle));
}
return nullptr;
}
//! BM_Ragdoll_AtRest - This test just spawns the requested number of ragdolls and places them near the terrain
//! The test will run the simulation for ~1800 game frames at 60fps.
BENCHMARK_DEFINE_F(PhysXCharactersRagdollBenchmarkFixture, BM_Ragdoll_AtRest)(benchmark::State& state)
{
//setup some pieces for the test
const int numRagdolls = static_cast<const int>(state.range(0));
//create ragdolls
AZStd::vector<PhysX::Ragdoll*> ragdolls;
ragdolls.reserve(numRagdolls);
for (int i = 0; i < numRagdolls; i++)
{
ragdolls.emplace_back(CreateRagdoll(m_testSceneHandle));
}
//enable and position the ragdolls
int spawnColIdx = 0;
int spawnRowIdx = 0;
const float spacing = 5.0f;
const int ragdollsPerCol = static_cast<const int>(RagdollConstants::TerrainSize / spacing) - 1;
for (auto& ragdoll : ragdolls)
{
spawnColIdx++;
if (spawnColIdx >= ragdollsPerCol)
{
spawnColIdx = 0;
spawnRowIdx++;
}
const AZ::Vector3 rootSpawnPosition(spacing + (spacing * spawnColIdx), spacing + (spacing * spawnRowIdx), 0.0f);
auto kinematicTPose = GetTPose(rootSpawnPosition, static_cast<Physics::SimulationType>(state.range(1)));
ragdoll->EnableSimulation(kinematicTPose);
ragdoll->SetState(kinematicTPose);
}
//setup the sub tick tracker
PhysX::Benchmarks::Utils::PrePostSimulationEventHandler subTickTracker;
subTickTracker.Start(m_defaultScene);
//setup the frame timer tracker
AZStd::vector<double> tickTimes;
tickTimes.reserve(RagdollConstants::GameFramesToSimulate);
for ([[maybe_unused]] auto _ : state)
{
for (AZ::u32 i = 0; i < RagdollConstants::GameFramesToSimulate; i++)
{
auto start = AZStd::chrono::system_clock::now();
StepScene1Tick(DefaultTimeStep);
//time each physics tick and store it to analyze
auto tickElapsedMilliseconds = PhysX::Benchmarks::Types::double_milliseconds(AZStd::chrono::system_clock::now() - start);
tickTimes.emplace_back(tickElapsedMilliseconds.count());
}
}
subTickTracker.Stop();
//get the P50, P90, P99 percentiles
PhysX::Benchmarks::Utils::ReportFramePercentileCounters(state, tickTimes, subTickTracker.GetSubTickTimes());
PhysX::Benchmarks::Utils::ReportFrameStandardDeviationAndMeanCounters(state, tickTimes, subTickTracker.GetSubTickTimes());
}
//! BM_Ragdoll_MovingAndColliding - This test will create the physics washing machine, a cylinder with a spinning blade where
//! it will spawn the requested number of ragdolls and places them above the machine to fall into the spinning blade.
//! The test will run the simulation for ~1800 game frames at 60fps.
BENCHMARK_DEFINE_F(PhysXCharactersRagdollBenchmarkFixture, BM_Ragdoll_MovingAndColliding)(benchmark::State& state)
{
//setup some pieces for the test
AZ::SimpleLcgRandom rand;
rand.SetSeed(RagdollConstants::RandGenSeed);
const int numRagdolls = static_cast<const int>(state.range(0));
//Create a washing machine of physx objects. This is a cylinder with a spinning blade that rigid bodies are placed inside
const AZ::Vector3 washingMachineCentre(500.0f, 500.0f, 0.0f);
PhysX::Benchmarks::WashingMachine washingMachine;
washingMachine.SetupWashingMachine(
m_testSceneHandle, RagdollConstants::WashingMachine::CylinderRadius, RagdollConstants::WashingMachine::CylinderHeight,
washingMachineCentre, RagdollConstants::WashingMachine::BladeRPM);
//create ragdolls
AZStd::vector<PhysX::Ragdoll*> ragdolls;
ragdolls.reserve(numRagdolls);
for (int i = 0; i < numRagdolls; i++)
{
ragdolls.emplace_back(CreateRagdoll(m_testSceneHandle));
}
//enable and position the ragdolls
int idx = 0;
for (auto& ragdoll : ragdolls)
{
const float u = std::sqrt(rand.GetRandomFloat());
const float theta = AZ::Constants::TwoPi * rand.GetRandomFloat();
const float x = washingMachineCentre.GetX() + RagdollConstants::WashingMachine::CylinderRadius * u * std::sin(theta);
const float y = washingMachineCentre.GetY() + RagdollConstants::WashingMachine::CylinderRadius * u * std::cos(theta);
const float z = washingMachineCentre.GetZ() + 1.0f + (0.3f * idx);
auto kinematicTPose = GetTPose(AZ::Vector3(x, y, z), Physics::SimulationType::Dynamic);
ragdoll->EnableSimulation(kinematicTPose);
ragdoll->SetState(kinematicTPose);
idx++;
}
//setup the sub tick tracker
PhysX::Benchmarks::Utils::PrePostSimulationEventHandler subTickTracker;
subTickTracker.Start(m_defaultScene);
//setup the frame timer tracker
AZStd::vector<double> tickTimes;
tickTimes.reserve(RagdollConstants::GameFramesToSimulate);
for ([[maybe_unused]] auto _ : state)
{
for (AZ::u32 i = 0; i < RagdollConstants::GameFramesToSimulate; i++)
{
auto start = AZStd::chrono::system_clock::now();
StepScene1Tick(DefaultTimeStep);
//time each physics tick and store it to analyze
auto tickElapsedMilliseconds = PhysX::Benchmarks::Types::double_milliseconds(AZStd::chrono::system_clock::now() - start);
tickTimes.emplace_back(tickElapsedMilliseconds.count());
}
}
subTickTracker.Stop();
//get the P50, P90, P99 percentiles
PhysX::Benchmarks::Utils::ReportFramePercentileCounters(state, tickTimes, subTickTracker.GetSubTickTimes());
PhysX::Benchmarks::Utils::ReportFrameStandardDeviationAndMeanCounters(state, tickTimes, subTickTracker.GetSubTickTimes());
}
BENCHMARK_REGISTER_F(PhysXCharactersRagdollBenchmarkFixture, BM_Ragdoll_AtRest)
->RangeMultiplier(RagdollConstants::BenchmarkSettings::RangeMultipler)
->Ranges({
{RagdollConstants::BenchmarkSettings::StartRange, RagdollConstants::BenchmarkSettings::EndRange},
{static_cast<int>(Physics::SimulationType::Kinematic), static_cast<int>(Physics::SimulationType::Dynamic)}
})
->Unit(benchmark::kMillisecond)
->Iterations(RagdollConstants::BenchmarkSettings::NumIterations)
;
BENCHMARK_REGISTER_F(PhysXCharactersRagdollBenchmarkFixture, BM_Ragdoll_MovingAndColliding)
->RangeMultiplier(RagdollConstants::BenchmarkSettings::RangeMultipler)
->Range(RagdollConstants::BenchmarkSettings::StartRange, RagdollConstants::BenchmarkSettings::EndRange)
->Unit(benchmark::kMillisecond)
->Iterations(RagdollConstants::BenchmarkSettings::NumIterations)
;
} // namespace PhysX::Benchmarks
#endif // #ifdef HAVE_BENCHMARK