// Modifications copyright Amazon.com, Inc. or its affiliates. #include // Taken from http://tog.acm.org/GraphicsGems/gemsiv/polar_decomp/Decompose.c /**** Decompose.c ****/ /* Ken Shoemake, 1993 */ #include #include "Decompose.h" #pragma warning(disable:4244) // conversion from 'double' to 'float', possible loss of data #pragma warning(disable:4305) // 'initializing' : truncation from 'double' to 'float' namespace decomp { /******* Matrix Preliminaries *******/ /** Fill out 3x3 matrix to 4x4 **/ #define mat_pad(A) (A[W][X]=A[X][W]=A[W][Y]=A[Y][W]=A[W][Z]=A[Z][W]=0,A[W][W]=1) /** Copy nxn matrix A to C using "gets" for assignment **/ #define mat_copy(C,gets,A,n) {int i,j; for(i=0;i= 0.0) { s = sqrt(tr + mat[W][W]); qu.w = s * 0.5; s = 0.5 / s; qu.x = (mat[Z][Y] - mat[Y][Z]) * s; qu.y = (mat[X][Z] - mat[Z][X]) * s; qu.z = (mat[Y][X] - mat[X][Y]) * s; } else { int h = X; if (mat[Y][Y] > mat[X][X]) h = Y; if (mat[Z][Z] > mat[h][h]) h = Z; switch (h) { #define caseMacro(i,j,k,I,J,K) \ case I:\ s = sqrt( (mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W] );\ qu.i = s*0.5;\ s = 0.5 / s;\ qu.j = (mat[I][J] + mat[J][I]) * s;\ qu.k = (mat[K][I] + mat[I][K]) * s;\ qu.w = (mat[K][J] - mat[J][K]) * s;\ break caseMacro(x, y, z, X, Y, Z); caseMacro(y, z, x, Y, Z, X); caseMacro(z, x, y, Z, X, Y); } } if (mat[W][W] != 1.0) qu = Qt_Scale(qu, 1 / sqrt(mat[W][W])); return (qu); } /******* Decomp Auxiliaries *******/ static HMatrix mat_id = { {1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1} }; /** Compute either the 1 or infinity norm of M, depending on tpose **/ float mat_norm(HMatrix M, int tpose) { int i; float sum, max; max = 0.0; for (i = 0; i < 3; i++) { if (tpose) sum = fabs(M[0][i]) + fabs(M[1][i]) + fabs(M[2][i]); else sum = fabs(M[i][0]) + fabs(M[i][1]) + fabs(M[i][2]); if (max < sum) max = sum; } return max; } float norm_inf(HMatrix M) { return mat_norm(M, 0); } float norm_one(HMatrix M) { return mat_norm(M, 1); } /** Return index of column of M containing maximum abs entry, or -1 if M=0 **/ int find_max_col(HMatrix M) { float abs, max; int i, j, col; max = 0.0; col = -1; for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) { abs = M[i][j]; if (abs < 0.0) abs = -abs; if (abs > max) { max = abs; col = j; } } return col; } /** Setup u for Household reflection to zero all v components but first **/ void make_reflector(float* v, float* u) { float s = sqrt(vdot(v, v)); u[0] = v[0]; u[1] = v[1]; u[2] = v[2] + ((v[2] < 0.0) ? -s : s); s = sqrt(2.0 / vdot(u, u)); u[0] = u[0] * s; u[1] = u[1] * s; u[2] = u[2] * s; } /** Apply Householder reflection represented by u to column vectors of M **/ void reflect_cols(HMatrix M, float* u) { int i, j; for (i = 0; i < 3; i++) { float s = u[0] * M[0][i] + u[1] * M[1][i] + u[2] * M[2][i]; for (j = 0; j < 3; j++) M[j][i] -= u[j] * s; } } /** Apply Householder reflection represented by u to row vectors of M **/ void reflect_rows(HMatrix M, float* u) { int i, j; for (i = 0; i < 3; i++) { float s = vdot(u, M[i]); for (j = 0; j < 3; j++) M[i][j] -= u[j] * s; } } /** Find orthogonal factor Q of rank 1 (or less) M **/ void do_rank1(HMatrix M, HMatrix Q) { float v1[3], v2[3], s; int col; mat_copy(Q, =, mat_id, 4); /* If rank(M) is 1, we should find a non-zero column in M */ col = find_max_col(M); if (col < 0) return; /* Rank is 0 */ v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col]; make_reflector(v1, v1); reflect_cols(M, v1); v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2]; make_reflector(v2, v2); reflect_rows(M, v2); s = M[2][2]; if (s < 0.0) Q[2][2] = -1.0; reflect_cols(Q, v1); reflect_rows(Q, v2); } /** Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose **/ void do_rank2(HMatrix M, HMatrix MadjT, HMatrix Q) { float v1[3], v2[3]; float w, x, y, z, c, s, d; int col; /* If rank(M) is 2, we should find a non-zero column in MadjT */ col = find_max_col(MadjT); if (col < 0) { do_rank1(M, Q); return; } /* Rank<2 */ v1[0] = MadjT[0][col]; v1[1] = MadjT[1][col]; v1[2] = MadjT[2][col]; make_reflector(v1, v1); reflect_cols(M, v1); vcross(M[0], M[1], v2); make_reflector(v2, v2); reflect_rows(M, v2); w = M[0][0]; x = M[0][1]; y = M[1][0]; z = M[1][1]; if (w * z > x* y) { c = z + w; s = y - x; d = sqrt(c * c + s * s); c = c / d; s = s / d; Q[0][0] = Q[1][1] = c; Q[0][1] = -(Q[1][0] = s); } else { c = z - w; s = y + x; d = sqrt(c * c + s * s); c = c / d; s = s / d; Q[0][0] = -(Q[1][1] = c); Q[0][1] = Q[1][0] = s; } Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0; Q[2][2] = 1.0; reflect_cols(Q, v1); reflect_rows(Q, v2); } /******* Polar Decomposition *******/ /* Polar Decomposition of 3x3 matrix in 4x4, * M = QS. See Nicholas Higham and Robert S. Schreiber, * Fast Polar Decomposition of An Arbitrary Matrix, * Technical Report 88-942, October 1988, * Department of Computer Science, Cornell University. */ float polar_decomp(HMatrix M, HMatrix Q, HMatrix S) { #define TOL 1.0e-6 HMatrix Mk, MadjTk, Ek; float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2; int i, j; mat_tpose(Mk, =, M, 3); M_one = norm_one(Mk); M_inf = norm_inf(Mk); do { adjoint_transpose(Mk, MadjTk); det = vdot(Mk[0], MadjTk[0]); if (det == 0.0) { do_rank2(Mk, MadjTk, Mk); break; } MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk); gamma = sqrt(sqrt((MadjT_one * MadjT_inf) / (M_one * M_inf)) / fabs(det)); g1 = gamma * 0.5; g2 = 0.5 / (gamma * det); mat_copy(Ek, =, Mk, 3); mat_binop(Mk, =, g1 * Mk, +, g2 * MadjTk, 3); mat_copy(Ek, -=, Mk, 3); E_one = norm_one(Ek); M_one = norm_one(Mk); M_inf = norm_inf(Mk); } while (E_one > (M_one * TOL)); mat_tpose(Q, =, Mk, 3); mat_pad(Q); mat_mult(Mk, M, S); mat_pad(S); for (i = 0; i < 3; i++) for (j = i; j < 3; j++) S[i][j] = S[j][i] = 0.5 * (S[i][j] + S[j][i]); return (det); } /******* Spectral Decomposition *******/ /* Compute the spectral decomposition of symmetric positive semi-definite S. * Returns rotation in U and scale factors in result, so that if K is a diagonal * matrix of the scale factors, then S = U K (U transpose). Uses Jacobi method. * See Gene H. Golub and Charles F. Van Loan. Matrix Computations. Hopkins 1983. */ HVect spect_decomp(HMatrix S, HMatrix U) { HVect kv; double Diag[3], OffD[3]; /* OffD is off-diag (by omitted index) */ double g, h, fabsh, fabsOffDi, t, theta, c, s, tau, ta, OffDq, a, b; static char nxt[] = { Y,Z,X }; int sweep, i, j; mat_copy(U, =, mat_id, 4); Diag[X] = S[X][X]; Diag[Y] = S[Y][Y]; Diag[Z] = S[Z][Z]; OffD[X] = S[Y][Z]; OffD[Y] = S[Z][X]; OffD[Z] = S[X][Y]; for (sweep = 20; sweep > 0; sweep--) { float sm = fabs(OffD[X]) + fabs(OffD[Y]) + fabs(OffD[Z]); if (sm == 0.0) break; for (i = Z; i >= X; i--) { int p = nxt[i]; int q = nxt[p]; fabsOffDi = fabs(OffD[i]); g = 100.0 * fabsOffDi; if (fabsOffDi > 0.0) { h = Diag[q] - Diag[p]; fabsh = fabs(h); if (fabsh + g == fabsh) { t = OffD[i] / h; } else { theta = 0.5 * h / OffD[i]; t = 1.0 / (fabs(theta) + sqrt(theta * theta + 1.0)); if (theta < 0.0) t = -t; } c = 1.0 / sqrt(t * t + 1.0); s = t * c; tau = s / (c + 1.0); ta = t * OffD[i]; OffD[i] = 0.0; Diag[p] -= ta; Diag[q] += ta; OffDq = OffD[q]; OffD[q] -= s * (OffD[p] + tau * OffD[q]); OffD[p] += s * (OffDq - tau * OffD[p]); for (j = Z; j >= X; j--) { a = U[j][p]; b = U[j][q]; U[j][p] -= s * (b + tau * a); U[j][q] += s * (a - tau * b); } } } } kv.x = Diag[X]; kv.y = Diag[Y]; kv.z = Diag[Z]; kv.w = 1.0; return (kv); } /******* Spectral Axis Adjustment *******/ /* Given a unit quaternion, q, and a scale vector, k, find a unit quaternion, p, * which permutes the axes and turns freely in the plane of duplicate scale * factors, such that q p has the largest possible w component, i.e. the * smallest possible angle. Permutes k's components to go with q p instead of q. * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition. * Proceedings of Graphics Interface 1992. Details on p. 262-263. */ Quat snuggle(Quat q, HVect* k) { #define SQRTHALF (0.7071067811865475244f) #define sgn(n,v) ((n)?-(v):(v)) #define swap(a,i,j) {a[3]=a[i]; a[i]=a[j]; a[j]=a[3];} #define cycle(a,p) if (p) {a[3]=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=a[3];}\ else {a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=a[3];} Quat p; float ka[4]; int i, turn = -1; ka[X] = k->x; ka[Y] = k->y; ka[Z] = k->z; if (ka[X] == ka[Y]) { if (ka[X] == ka[Z]) turn = W; else turn = Z; } else { if (ka[X] == ka[Z]) turn = Y; else if (ka[Y] == ka[Z]) turn = X; } if (turn >= 0) { Quat qtoz, qp; unsigned neg[3], win; double mag[3], t; static Quat qxtoz = { 0,SQRTHALF,0,SQRTHALF }; static Quat qytoz = { SQRTHALF,0,0,SQRTHALF }; static Quat qppmm = { 0.5, 0.5,-0.5,-0.5 }; static Quat qpppp = { 0.5, 0.5, 0.5, 0.5 }; static Quat qmpmm = { -0.5, 0.5,-0.5,-0.5 }; static Quat qpppm = { 0.5, 0.5, 0.5,-0.5 }; static Quat q0001 = { 0.0, 0.0, 0.0, 1.0 }; static Quat q1000 = { 1.0, 0.0, 0.0, 0.0 }; switch (turn) { default: return (Qt_Conj(q)); case X: q = Qt_Mul(q, qtoz = qxtoz); swap(ka, X, Z) break; case Y: q = Qt_Mul(q, qtoz = qytoz); swap(ka, Y, Z) break; case Z: qtoz = q0001; break; } q = Qt_Conj(q); mag[0] = (double)q.z * q.z + (double)q.w * q.w - 0.5; mag[1] = (double)q.x * q.z - (double)q.y * q.w; mag[2] = (double)q.y * q.z + (double)q.x * q.w; for (i = 0; i < 3; i++) if (neg[i] = (mag[i] < 0.0)) mag[i] = -mag[i]; if (mag[0] > mag[1]) { if (mag[0] > mag[2]) win = 0; else win = 2; } else { if (mag[1] > mag[2]) win = 1; else win = 2; } switch (win) { case 0: if (neg[0]) p = q1000; else p = q0001; break; case 1: if (neg[1]) p = qppmm; else p = qpppp; cycle(ka, 0) break; case 2: if (neg[2]) p = qmpmm; else p = qpppm; cycle(ka, 1) break; } qp = Qt_Mul(q, p); t = sqrt(mag[win] + 0.5); p = Qt_Mul(p, Qt_(0.0, 0.0, -qp.z / t, qp.w / t)); p = Qt_Mul(qtoz, Qt_Conj(p)); } else { float qa[4], pa[4]; unsigned lo, hi, neg[4], par = 0; double all, big, two; qa[0] = q.x; qa[1] = q.y; qa[2] = q.z; qa[3] = q.w; for (i = 0; i < 4; i++) { pa[i] = 0.0; if (neg[i] = (qa[i] < 0.0)) qa[i] = -qa[i]; par ^= neg[i]; } /* Find two largest components, indices in hi and lo */ if (qa[0] > qa[1]) lo = 0; else lo = 1; if (qa[2] > qa[3]) hi = 2; else hi = 3; if (qa[lo] > qa[hi]) { if (qa[lo ^ 1] > qa[hi]) { hi = lo; lo ^= 1; } else { hi ^= lo; lo ^= hi; hi ^= lo; } } else {if (qa[hi^1]>qa[lo]) lo = hi^1;} all = (qa[0] + qa[1] + qa[2] + qa[3]) * 0.5; two = (qa[hi] + qa[lo]) * SQRTHALF; big = qa[hi]; if (all > two) { if (all > big) {/*all*/ {int i; for (i = 0; i < 4; i++) pa[i] = sgn(neg[i], 0.5); } cycle(ka, par) } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);} } else { if (two > big) {/*two*/ pa[hi] = sgn(neg[hi], SQRTHALF); pa[lo] = sgn(neg[lo], SQRTHALF); if (lo > hi) { hi ^= lo; lo ^= hi; hi ^= lo; } if (hi == W) { hi = "\001\002\000"[lo]; lo = 3 - hi - lo; } swap(ka, hi, lo) } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);} } p.x = -pa[0]; p.y = -pa[1]; p.z = -pa[2]; p.w = pa[3]; } k->x = ka[X]; k->y = ka[Y]; k->z = ka[Z]; return (p); } /******* Decompose Affine Matrix *******/ /* Decompose 4x4 affine matrix A as TFRUK(U transpose), where t contains the * translation components, q contains the rotation R, u contains U, k contains * scale factors, and f contains the sign of the determinant. * Assumes A transforms column vectors in right-handed coordinates. * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition. * Proceedings of Graphics Interface 1992. */ void decomp_affine(HMatrix A, AffineParts* parts) { HMatrix Q, S, U; Quat p; float det; parts->t = Qt_(A[X][W], A[Y][W], A[Z][W], 0); det = polar_decomp(A, Q, S); if (det < 0.0) { mat_copy(Q, =, -Q, 3); parts->f = -1; } else parts->f = 1; parts->q = Qt_FromMatrix(Q); parts->k = spect_decomp(S, U); parts->u = Qt_FromMatrix(U); p = snuggle(parts->u, &parts->k); parts->u = Qt_Mul(parts->u, p); } /******* Invert Affine Decomposition *******/ /* Compute inverse of affine decomposition. */ void invert_affine(AffineParts* parts, AffineParts* inverse) { Quat t, p; inverse->f = parts->f; inverse->q = Qt_Conj(parts->q); inverse->u = Qt_Mul(parts->q, parts->u); inverse->k.x = (parts->k.x == 0.0) ? 0.0 : 1.0 / parts->k.x; inverse->k.y = (parts->k.y == 0.0) ? 0.0 : 1.0 / parts->k.y; inverse->k.z = (parts->k.z == 0.0) ? 0.0 : 1.0 / parts->k.z; inverse->k.w = parts->k.w; t = Qt_(-parts->t.x, -parts->t.y, -parts->t.z, 0); t = Qt_Mul(Qt_Conj(inverse->u), Qt_Mul(t, inverse->u)); t = Qt_(inverse->k.x * t.x, inverse->k.y * t.y, inverse->k.z * t.z, 0); p = Qt_Mul(inverse->q, inverse->u); t = Qt_Mul(p, Qt_Mul(t, Qt_Conj(p))); inverse->t = (inverse->f > 0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0); } }