/* * Copyright (c) Contributors to the Open 3D Engine Project. * For complete copyright and license terms please see the LICENSE at the root of this distribution. * * SPDX-License-Identifier: Apache-2.0 OR MIT * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace PhysX { namespace { const AZ::Vector3 DefaultCenterOfMass = AZ::Vector3::CreateZero(); const float DefaultMass = 1.0f; const AZ::Matrix3x3 DefaultInertiaTensor = AZ::Matrix3x3::CreateIdentity(); bool IsSimulationShape(const physx::PxShape& pxShape) { return (pxShape.getFlags() & physx::PxShapeFlag::eSIMULATION_SHAPE); } bool CanShapeComputeMassProperties(const physx::PxShape& pxShape) { // Note: List based on computeMassAndInertia function in ExtRigidBodyExt.cpp file in PhysX. const physx::PxGeometryType::Enum geometryType = pxShape.getGeometryType(); return geometryType == physx::PxGeometryType::eSPHERE || geometryType == physx::PxGeometryType::eBOX || geometryType == physx::PxGeometryType::eCAPSULE || geometryType == physx::PxGeometryType::eCONVEXMESH; } } void RigidBody::Reflect(AZ::ReflectContext* context) { AZ::SerializeContext* serializeContext = azrtti_cast(context); if (serializeContext) { serializeContext->Class() ->Version(1) ; } } RigidBody::RigidBody(const AzPhysics::RigidBodyConfiguration& configuration) : m_startAsleep(configuration.m_startAsleep) { CreatePhysXActor(configuration); } RigidBody::~RigidBody() { //clean up the attached shapes if(m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); for (auto shape : m_shapes) { m_pxRigidActor->detachShape(*shape->GetPxShape()); shape->DetachedFromActor(); } } m_shapes.clear(); // Invalidate user data so it sets m_pxRigidActor->userData to nullptr. // It's appropriate to do this as m_pxRigidActor is a shared pointer and // techniqucally it could survive m_actorUserData life's spam. m_actorUserData.Invalidate(); } void RigidBody::CreatePhysXActor(const AzPhysics::RigidBodyConfiguration& configuration) { if (m_pxRigidActor != nullptr) { AZ_Warning("PhysX Rigid Body", false, "Trying to create PhysX rigid actor when it's already created"); return; } if (m_pxRigidActor = PxActorFactories::CreatePxRigidBody(configuration)) { m_actorUserData = ActorData(m_pxRigidActor.get()); m_actorUserData.SetRigidBody(this); m_actorUserData.SetEntityId(configuration.m_entityId); SetName(configuration.m_debugName); SetGravityEnabled(configuration.m_gravityEnabled); SetCCDEnabled(configuration.m_ccdEnabled); SetKinematic(configuration.m_kinematic); if (configuration.m_customUserData) { SetUserData(configuration.m_customUserData); } } } void RigidBody::AddShape(AZStd::shared_ptr shape) { if (!m_pxRigidActor || !shape) { return; } auto pxShape = AZStd::rtti_pointer_cast(shape); if (!pxShape) { AZ_Error("PhysX Rigid Body", false, "Trying to add a shape of unknown type. Name: %s", GetName().c_str()); return; } if (!pxShape->GetPxShape()) { AZ_Error("PhysX Rigid Body", false, "Trying to add a shape with no valid PxShape. Name: %s", GetName().c_str()); return; } if (pxShape->GetPxShape()->getGeometryType() == physx::PxGeometryType::eTRIANGLEMESH && !IsKinematic()) { AZ_Error("PhysX", false, "Cannot use triangle mesh geometry on a dynamic object: %s", GetName().c_str()); return; } { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->attachShape(*pxShape->GetPxShape()); } pxShape->AttachedToActor(m_pxRigidActor.get()); m_shapes.push_back(pxShape); } void RigidBody::RemoveShape(AZStd::shared_ptr shape) { if (m_pxRigidActor == nullptr) { AZ_Warning("PhysX::RigidBody", false, "Trying to remove shape from rigid body with no actor"); return; } auto pxShape = AZStd::rtti_pointer_cast(shape); if (!pxShape) { AZ_Warning("PhysX::RigidBody", false, "Trying to remove shape of unknown type", GetName().c_str()); return; } const auto found = AZStd::find(m_shapes.begin(), m_shapes.end(), shape); if (found == m_shapes.end()) { AZ_Warning("PhysX::RigidBody", false, "Shape has not been attached to this rigid body: %s", GetName().c_str()); return; } { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->detachShape(*pxShape->GetPxShape()); } pxShape->DetachedFromActor(); m_shapes.erase(found); } void RigidBody::UpdateMassProperties(AzPhysics::MassComputeFlags flags, const AZ::Vector3& centerOfMassOffsetOverride, const AZ::Matrix3x3& inertiaTensorOverride, const float massOverride) { const bool computeCenterOfMass = AzPhysics::MassComputeFlags::COMPUTE_COM == (flags & AzPhysics::MassComputeFlags::COMPUTE_COM); const bool computeInertiaTensor = AzPhysics::MassComputeFlags::COMPUTE_INERTIA == (flags & AzPhysics::MassComputeFlags::COMPUTE_INERTIA); const bool computeMass = AzPhysics::MassComputeFlags::COMPUTE_MASS == (flags & AzPhysics::MassComputeFlags::COMPUTE_MASS); const bool needsCompute = computeCenterOfMass || computeInertiaTensor || computeMass; const bool includeAllShapesInMassCalculation = AzPhysics::MassComputeFlags::INCLUDE_ALL_SHAPES == (flags & AzPhysics::MassComputeFlags::INCLUDE_ALL_SHAPES); // Basic case where all properties are set directly. if (!needsCompute) { SetCenterOfMassOffset(centerOfMassOffsetOverride); SetMass(massOverride); SetInertia(inertiaTensorOverride); return; } // If there are no shapes then set the properties directly without computing anything. if (m_shapes.empty()) { SetCenterOfMassOffset(computeCenterOfMass ? DefaultCenterOfMass : centerOfMassOffsetOverride); SetMass(computeMass ? DefaultMass : massOverride); SetInertia(computeInertiaTensor ? DefaultInertiaTensor : inertiaTensorOverride); return; } auto cannotComputeMassProperties = [this, includeAllShapesInMassCalculation] { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return AZStd::any_of(m_shapes.cbegin(), m_shapes.cend(), [includeAllShapesInMassCalculation](const AZStd::shared_ptr& shape) { const physx::PxShape& pxShape = *shape->GetPxShape(); const bool includeShape = includeAllShapesInMassCalculation || IsSimulationShape(pxShape); return includeShape && !CanShapeComputeMassProperties(pxShape); }); }; // If contains shapes that cannot compute mass properties (triangle mesh, // plane or heightfield) then default values will be used. if (cannotComputeMassProperties()) { AZ_Warning("RigidBody", !computeCenterOfMass, "Rigid body '%s' cannot compute COM because it contains triangle mesh, plane or heightfield shapes, it will default to %s.", GetName().c_str(), AZStd::to_string(DefaultCenterOfMass).c_str()); AZ_Warning("RigidBody", !computeMass, "Rigid body '%s' cannot compute Mass because it contains triangle mesh, plane or heightfield shapes, it will default to %0.1f.", GetName().c_str(), DefaultMass); AZ_Warning("RigidBody", !computeInertiaTensor, "Rigid body '%s' cannot compute Inertia because it contains triangle mesh, plane or heightfield shapes, it will default to %s.", GetName().c_str(), AZStd::to_string(DefaultInertiaTensor.RetrieveScale()).c_str()); SetCenterOfMassOffset(computeCenterOfMass ? DefaultCenterOfMass : centerOfMassOffsetOverride); SetMass(computeMass ? DefaultMass : massOverride); SetInertia(computeInertiaTensor ? DefaultInertiaTensor : inertiaTensorOverride); return; } // Center of mass needs to be considered first since // it's needed when computing mass and inertia. if (computeCenterOfMass) { // Compute Center of Mass UpdateCenterOfMass(includeAllShapesInMassCalculation); } else { SetCenterOfMassOffset(centerOfMassOffsetOverride); } const physx::PxVec3 pxCenterOfMass = PxMathConvert(GetCenterOfMassLocal()); if (computeMass) { // Gather material densities from all shapes, // mass computation is based on them. AZStd::vector densities; densities.reserve(m_shapes.size()); for (const auto& shape : m_shapes) { densities.emplace_back(shape->GetMaterial()->GetDensity()); } // Compute Mass + Inertia { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); physx::PxRigidBodyExt::updateMassAndInertia(*m_pxRigidActor, densities.data(), static_cast(densities.size()), &pxCenterOfMass, includeAllShapesInMassCalculation); } // There is no physx function to only compute the mass without // computing the inertia. So now that both have been computed // we can override the inertia if it's suppose to use a // specific value set by the user. if (!computeInertiaTensor) { SetInertia(inertiaTensorOverride); } } else { if (computeInertiaTensor) { // Set Mass + Compute Inertia PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); physx::PxRigidBodyExt::setMassAndUpdateInertia(*m_pxRigidActor, massOverride, &pxCenterOfMass, includeAllShapesInMassCalculation); } else { SetMass(massOverride); SetInertia(inertiaTensorOverride); } } } AZ::u32 RigidBody::GetShapeCount() { return static_cast(m_shapes.size()); } AZStd::shared_ptr RigidBody::GetShape(AZ::u32 index) { if (index >= m_shapes.size()) { return nullptr; } return m_shapes[index]; } AZ::Vector3 RigidBody::GetCenterOfMassWorld() const { return m_pxRigidActor ? GetTransform().TransformPoint(GetCenterOfMassLocal()) : AZ::Vector3::CreateZero(); } AZ::Vector3 RigidBody::GetCenterOfMassLocal() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getCMassLocalPose().p); } return AZ::Vector3::CreateZero(); } AZ::Matrix3x3 RigidBody::GetInverseInertiaWorld() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); AZ::Vector3 inverseInertiaDiagonal = PxMathConvert(m_pxRigidActor->getMassSpaceInvInertiaTensor()); AZ::Matrix3x3 rotationToWorld = AZ::Matrix3x3::CreateFromQuaternion(PxMathConvert(m_pxRigidActor->getGlobalPose().q.getConjugate())); return Physics::Utils::InverseInertiaLocalToWorld(inverseInertiaDiagonal, rotationToWorld); } return AZ::Matrix3x3::CreateZero(); } AZ::Matrix3x3 RigidBody::GetInverseInertiaLocal() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); physx::PxVec3 inverseInertiaDiagonal = m_pxRigidActor->getMassSpaceInvInertiaTensor(); return AZ::Matrix3x3::CreateDiagonal(PxMathConvert(inverseInertiaDiagonal)); } return AZ::Matrix3x3::CreateZero(); } float RigidBody::GetMass() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return m_pxRigidActor->getMass(); } return 0.0f; } float RigidBody::GetInverseMass() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return m_pxRigidActor->getInvMass(); } return 0.0f; } void RigidBody::SetMass(float mass) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setMass(mass); } } void RigidBody::SetCenterOfMassOffset(const AZ::Vector3& comOffset) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setCMassLocalPose(physx::PxTransform(PxMathConvert(Utils::Sanitize(comOffset)))); } } void RigidBody::UpdateCenterOfMass(bool includeAllShapesInMassCalculation) { if (m_shapes.empty()) { SetCenterOfMassOffset(DefaultCenterOfMass); return; } AZStd::vector pxShapes; pxShapes.reserve(m_shapes.size()); { // Filter shapes in the same way that updateMassAndInertia function does. PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); for (const auto& shape : m_shapes) { const physx::PxShape& pxShape = *shape->GetPxShape(); const bool includeShape = includeAllShapesInMassCalculation || IsSimulationShape(pxShape); if (includeShape && CanShapeComputeMassProperties(pxShape)) { pxShapes.emplace_back(&pxShape); } } } if (pxShapes.empty()) { SetCenterOfMassOffset(DefaultCenterOfMass); return; } const physx::PxMassProperties pxMassProperties = [this, &pxShapes] { // Note: PhysX computeMassPropertiesFromShapes function does not use densities // to compute the shape's masses, which are needed to calculate the center of mass. // This differs from updateMassAndInertia function, which uses material density values. // So the masses used during center of mass calculation do not match the masses // used during mass/inertia calculation. This is an inconsistency in PhysX. PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return physx::PxRigidBodyExt::computeMassPropertiesFromShapes(pxShapes.data(), static_cast(pxShapes.size())); }(); SetCenterOfMassOffset(PxMathConvert(pxMassProperties.centerOfMass)); } void RigidBody::SetInertia(const AZ::Matrix3x3& inertia) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setMassSpaceInertiaTensor(PxMathConvert(inertia.RetrieveScale())); } } AZ::Vector3 RigidBody::GetLinearVelocity() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getLinearVelocity()); } return AZ::Vector3::CreateZero(); } void RigidBody::SetLinearVelocity(const AZ::Vector3& velocity) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setLinearVelocity(PxMathConvert(Utils::Sanitize(velocity))); } } AZ::Vector3 RigidBody::GetAngularVelocity() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getAngularVelocity()); } return AZ::Vector3::CreateZero(); } void RigidBody::SetAngularVelocity(const AZ::Vector3& angularVelocity) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setAngularVelocity(PxMathConvert(Utils::Sanitize(angularVelocity))); } } AZ::Vector3 RigidBody::GetLinearVelocityAtWorldPoint(const AZ::Vector3& worldPoint) const { return m_pxRigidActor ? GetLinearVelocity() + GetAngularVelocity().Cross(worldPoint - GetCenterOfMassWorld()) : AZ::Vector3::CreateZero(); } void RigidBody::ApplyLinearImpulse(const AZ::Vector3& impulse) { if (m_pxRigidActor) { physx::PxScene* scene = m_pxRigidActor->getScene(); if (!scene) { AZ_Warning("PhysX Rigid Body", false, "ApplyLinearImpulse is only valid if the rigid body has been added to a scene. Name: %s", GetName().c_str()); return; } if (IsKinematic()) { AZ_Warning("PhysX Rigid Body", false, "ApplyLinearImpulse is only valid if the rigid body is not kinematic. Name: %s", GetName().c_str()); return; } PHYSX_SCENE_WRITE_LOCK(scene); m_pxRigidActor->addForce(PxMathConvert(Utils::Sanitize(impulse)), physx::PxForceMode::eIMPULSE); } } void RigidBody::ApplyLinearImpulseAtWorldPoint(const AZ::Vector3& impulse, const AZ::Vector3& worldPoint) { if (m_pxRigidActor) { if (IsKinematic()) { AZ_Warning("PhysX Rigid Body", false, "ApplyLinearImpulseAtWorldPoint is only valid if the rigid body is not kinematic. Name: %s", GetName().c_str()); return; } PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); physx::PxRigidBodyExt::addForceAtPos(*m_pxRigidActor, PxMathConvert(Utils::Sanitize(impulse)), PxMathConvert(Utils::Sanitize(worldPoint)), physx::PxForceMode::eIMPULSE); } } void RigidBody::ApplyAngularImpulse(const AZ::Vector3& angularImpulse) { if (m_pxRigidActor) { physx::PxScene* scene = m_pxRigidActor->getScene(); if (!scene) { AZ_Warning("PhysX Rigid Body", false, "ApplyAngularImpulse is only valid if the rigid body has been added to a scene. Name: %s", GetName().c_str()); return; } if (IsKinematic()) { AZ_Warning("PhysX Rigid Body", false, "ApplyAngularImpulse is only valid if the rigid body is not kinematic. Name: %s", GetName().c_str()); return; } PHYSX_SCENE_WRITE_LOCK(scene); m_pxRigidActor->addTorque(PxMathConvert(Utils::Sanitize(angularImpulse)), physx::PxForceMode::eIMPULSE); } } void RigidBody::SetKinematic(bool isKinematic) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setRigidBodyFlag(physx::PxRigidBodyFlag::eKINEMATIC, isKinematic); } } bool RigidBody::IsKinematic() const { bool result = false; if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); auto rigidBodyFlags = m_pxRigidActor->getRigidBodyFlags(); result = rigidBodyFlags.isSet(physx::PxRigidBodyFlag::eKINEMATIC); } return result; } void RigidBody::SetKinematicTarget(const AZ::Transform& targetTransform) { if (IsKinematic()) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setKinematicTarget(PxMathConvert(targetTransform)); } else { AZ_Error("PhysX Rigid Body", false, "SetKinematicTarget is only valid if rigid body is kinematic. Name: %s", GetName().c_str()); } } bool RigidBody::IsGravityEnabled() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return m_pxRigidActor->getActorFlags().isSet(physx::PxActorFlag::eDISABLE_GRAVITY) == false; } return false; } void RigidBody::SetGravityEnabled(bool enabled) { { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setActorFlag(physx::PxActorFlag::eDISABLE_GRAVITY, enabled == false); } if (enabled) { ForceAwake(); } } void RigidBody::SetSimulationEnabled(bool enabled) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setActorFlag(physx::PxActorFlag::eDISABLE_SIMULATION, enabled == false); } } void RigidBody::SetCCDEnabled(bool enabled) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setRigidBodyFlag(physx::PxRigidBodyFlag::eENABLE_CCD, enabled); } AZ::Transform RigidBody::GetTransform() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getGlobalPose()); } return AZ::Transform::CreateIdentity(); } void RigidBody::SetTransform(const AZ::Transform& transform) { if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setGlobalPose(PxMathConvert(transform)); } } AZ::Vector3 RigidBody::GetPosition() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getGlobalPose().p); } return AZ::Vector3::CreateZero(); } AZ::Quaternion RigidBody::GetOrientation() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getGlobalPose().q); } return AZ::Quaternion::CreateZero(); } AZ::Aabb RigidBody::GetAabb() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return PxMathConvert(m_pxRigidActor->getWorldBounds(1.0f)); } return AZ::Aabb::CreateNull(); } AZ::EntityId RigidBody::GetEntityId() const { return m_actorUserData.GetEntityId(); } AzPhysics::SceneQueryHit RigidBody::RayCast(const AzPhysics::RayCastRequest& request) { return PhysX::SceneQueryHelpers::ClosestRayHitAgainstShapes(request, m_shapes, GetTransform()); } // Physics::ReferenceBase AZ::Crc32 RigidBody::GetNativeType() const { return PhysX::NativeTypeIdentifiers::RigidBody; } void* RigidBody::GetNativePointer() const { return m_pxRigidActor.get(); } // Not in API but needed to support PhysicsComponentBus float RigidBody::GetLinearDamping() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return m_pxRigidActor->getLinearDamping(); } return 0.0f; } void RigidBody::SetLinearDamping(float damping) { if (damping < 0.0f) { AZ_Warning("PhysX Rigid Body", false, "Negative linear damping value (%6.4e). Name: %s", damping, GetName().c_str()); return; } if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setLinearDamping(damping); } } float RigidBody::GetAngularDamping() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return m_pxRigidActor->getAngularDamping(); } return 0.0f; } void RigidBody::SetAngularDamping(float damping) { if (damping < 0.0f) { AZ_Warning("PhysX Rigid Body", false, "Negative angular damping value (%6.4e). Name: %s", damping, GetName().c_str()); return; } if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setAngularDamping(damping); } } bool RigidBody::IsAwake() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return !m_pxRigidActor->isSleeping(); } return false; } void RigidBody::ForceAsleep() { if (m_pxRigidActor) //<- Rigid body must be in a scene, otherwise putToSleep will crash { physx::PxScene* scene = m_pxRigidActor->getScene(); if (scene) { PHYSX_SCENE_WRITE_LOCK(scene); m_pxRigidActor->putToSleep(); } } } void RigidBody::ForceAwake() { if (m_pxRigidActor) //<- Rigid body must be in a scene, otherwise wakeUp will crash { physx::PxScene* scene = m_pxRigidActor->getScene(); if (scene) { PHYSX_SCENE_WRITE_LOCK(scene); m_pxRigidActor->wakeUp(); } } } float RigidBody::GetSleepThreshold() const { if (m_pxRigidActor) { PHYSX_SCENE_READ_LOCK(m_pxRigidActor->getScene()); return m_pxRigidActor->getSleepThreshold(); } return 0.0f; } void RigidBody::SetSleepThreshold(float threshold) { if (threshold < 0.0f) { AZ_Warning("PhysX Rigid Body", false, "Negative sleep threshold value (%6.4e). Name: %s", threshold, GetName().c_str()); return; } if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setSleepThreshold(threshold); } } void RigidBody::SetName(const AZStd::string& entityName) { m_name = entityName; if (m_pxRigidActor) { PHYSX_SCENE_WRITE_LOCK(m_pxRigidActor->getScene()); m_pxRigidActor->setName(m_name.c_str()); } } const AZStd::string& RigidBody::GetName() const { return m_name; } }